import copy import os from functools import partial import pytest import torch import torch.distributed as dist from apex import amp from apex.parallel import DistributedDataParallel as DDP from torch.testing import assert_close from colossalai.elixir.cuda import gpu_device from colossalai.elixir.search import simple_search from colossalai.elixir.utils import init_distributed, seed_all from colossalai.elixir.wrapper import ElixirModule, ElixirOptimizer from colossalai.nn.optimizer import HybridAdam from colossalai.testing import run_on_environment_flag from tests.test_elixir.utils import TEST_MODELS, to_cuda def amp_check_model_states(ddp_optim, test_model): test_states = test_model.state_dict() for (name, _), p in zip(test_model.module.named_parameters(), amp.master_params(ddp_optim)): test_p = test_states[name] copy_p = p.to(test_p.device) print(f'checking parameter `{name}`: {test_p.dtype} {copy_p.dtype}') assert_close(test_p.data, copy_p.data) def exam_amp_one_model(model_fn, data_fn, nproc, group, exam_seed=2261): ddp_model = model_fn().cuda() test_model = copy.deepcopy(ddp_model) # important here, since apex has a lazy fp32 init after the first optimizer step test_model = test_model.half() ddp_optim = HybridAdam(ddp_model.parameters(), lr=1e-1, weight_decay=0) ddp_model, ddp_optim = amp.initialize(ddp_model, ddp_optim, opt_level='O2', loss_scale=1.0, keep_batchnorm_fp32=False) ddp_model = DDP(ddp_model, message_size=0, allreduce_always_fp32=True) print("ok") exit(0) test_optim = HybridAdam(test_model.parameters(), lr=1e-1, weight_decay=0) sr = simple_search(test_model, nproc, shard_device=gpu_device(), unified_dtype=torch.float16, verbose=True) test_model = ElixirModule(test_model, sr, group, dtype=torch.float16, reduce_always_fp32=True, output_fp32=True) test_optim = ElixirOptimizer(test_model, test_optim, initial_scale=1.0) # get different data seed_all(exam_seed + dist.get_rank(group), cuda_deterministic=True) for _ in range(2): data = to_cuda(data_fn()) ddp_optim.zero_grad() ddp_loss = ddp_model(**data) with amp.scale_loss(ddp_loss, ddp_optim) as scaled_loss: scaled_loss.backward() ddp_optim.step() test_optim.zero_grad() test_loss = test_model(**data) test_optim.backward(test_loss) test_optim.step() assert_close(ddp_loss, test_loss) amp_check_model_states(ddp_optim, test_model) def exam_amp_in_models(nproc, group): model_fn, data_fn = TEST_MODELS.get('gpt2_micro') exam_amp_one_model(model_fn, data_fn, nproc, group) def run_dist(rank, world_size): os.environ['RANK'] = str(rank) os.environ['LOCAL_RANK'] = str(rank) os.environ['WORLD_SIZE'] = str(world_size) os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = str(29512) init_distributed() exam_amp_in_models(nproc=world_size, group=dist.GroupMember.WORLD) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2, 4]) @run_on_environment_flag('ELX') def test_elixir_amp(world_size): run_func = partial(run_dist, world_size=world_size) torch.multiprocessing.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_elixir_amp(world_size=2)