from collections import defaultdict from typing import Any, Dict, List import torch from colossalai.shardformer.layer.loss import dist_log_prob def unbind_batch(batch: Dict[str, torch.Tensor]) -> List[Dict[str, torch.Tensor]]: batches = [] for k, v in batch.items(): if len(batches) == 0: unbinded_tensors = v.unbind(0) batches = [{k: tensor} for tensor in unbinded_tensors] else: unbinded_tensors = v.unbind(0) assert len(batches) == len(unbinded_tensors) for i, tensor in enumerate(unbinded_tensors): batches[i][k] = tensor return batches def bind_batch(batches: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]: batch = {} for k in batches[0].keys(): batch[k] = torch.stack([batch[k] for batch in batches], dim=0) return batch def pad_batch(batches: List[Dict[str, torch.Tensor]], tokenizer: Any = None) -> List[Dict[str, torch.Tensor]]: max_len = defaultdict(int) for sample in batches: for k in sample: if k in ["input_ids", "attention_mask", "action_log_probs", "action_mask"]: max_len[k] = max(max_len[k], sample[k].size(-1)) for idx, sample in enumerate(batches): for k in sample: if k in ["input_ids", "attention_mask", "action_log_probs", "action_mask"]: # right pad with 0s if k in ["attention_mask", "action_mask"]: batches[idx][k] = torch.nn.functional.pad( batches[idx][k], (0, max_len[k] - batches[idx][k].size(-1)), "constant", False ) else: batches[idx][k] = torch.nn.functional.pad( batches[idx][k], (0, max_len[k] - batches[idx][k].size(-1)), "constant", 0 ) return batches def pre_send(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # compress mask to save bandwidth if "attention_mask" in batch: batch["attention_mask"] = batch["attention_mask"].to(torch.bool) if "action_mask" in batch: batch["action_mask"] = batch["action_mask"].to(torch.bool) return batch def post_recv(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # decompress mask if "attention_mask" in batch: batch["attention_mask"] = batch["attention_mask"].to(torch.int) if "action_mask" in batch: batch["action_mask"] = batch["action_mask"].to(torch.int) return batch def update_by_default(data: Dict[str, Any], default: Dict[str, Any]) -> Dict[str, Any]: data = data.copy() for k, v in default.items(): if k not in data: data[k] = v return data def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: """ Compute the log probabilities from logits for the given labels. Args: logits (torch.Tensor): The input logits. labels (torch.Tensor): The target labels. Returns: torch.Tensor: The log probabilities corresponding to the labels. """ log_probs = torch.log_softmax(logits, dim=-1) per_label_logps = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)) return per_label_logps.squeeze(-1) def calc_action_log_probs( logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int, shard_config, vocab_size: int = None, ) -> torch.Tensor: """Calculate action log probs. Args: logits (torch.Tensor): Output tensor of Actor.forward.logits. sequences (torch.LongTensor): Input sequences. num_actions (int): Number of actions. shard_config vocab_size Returns: torch.Tensor: Action log probs. """ # labels: torch.Tensor, # [B, S] or [B, S, Vocab_size] # logits: torch.Tensor, # [B, S, Vocab_size] log_probs = dist_log_prob(sequences, logits, shard_config, vocab_size, logits.dtype) log_probs = log_probs.squeeze(-1) return log_probs[:, -num_actions:] def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: """ Compute the masked mean of a tensor along a specified dimension. Args: tensor (torch.Tensor): The input tensor. mask (torch.Tensor): The mask tensor with the same shape as the input tensor. dim (int, optional): The dimension along which to compute the mean. Default is 1. Returns: torch.Tensor: The masked mean tensor. """ tensor = tensor * mask tensor = tensor.sum(dim=dim) mask_sum = mask.sum(dim=dim) mean = tensor / (mask_sum + 1e-8) return mean def masked_sum(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: """ Compute the masked sum of a tensor along a specified dimension. Args: tensor (torch.Tensor): The input tensor. mask (torch.Tensor): The mask tensor with the same shape as the input tensor. dim (int, optional): The dimension along which to compute the sum. Default is 1. Returns: torch.Tensor: The masked sum tensor. """ tensor = tensor * mask return tensor.sum(dim=dim)