name: Build on 8 GPUs on: schedule: # run at 00:00 of every Sunday - cron: '0 0 * * *' workflow_dispatch: jobs: build: name: Build and Test Colossal-AI if: github.repository == 'hpcaitech/ColossalAI' runs-on: [self-hosted, 8-gpu] container: image: hpcaitech/pytorch-cuda:1.11.0-11.3.0 options: --gpus all --rm -v /data/scratch/cifar-10:/data/scratch/cifar-10 timeout-minutes: 40 steps: - uses: actions/checkout@v2 with: repository: hpcaitech/TensorNVMe ssh-key: ${{ secrets.SSH_KEY_FOR_CI }} path: TensorNVMe - name: Install tensornvme run: | cd TensorNVMe conda install cmake pip install -r requirements.txt pip install -v . - uses: actions/checkout@v2 with: ssh-key: ${{ secrets.SSH_KEY_FOR_CI }} - name: Install Colossal-AI run: | [ ! -z "$(ls -A /github/home/cuda_ext_cache/)" ] && cp -r /github/home/cuda_ext_cache/* /__w/ColossalAI/ColossalAI/ pip install -r requirements/requirements.txt pip install -v -e . cp -r /__w/ColossalAI/ColossalAI/build /github/home/cuda_ext_cache/ pip install -r requirements/requirements-test.txt - name: Unit Testing run: | gpu_used=$(nvidia-smi -i 0 --query-gpu=memory.used --format=csv,noheader,nounits) [ "$gpu_used" -le "100" ] && PYTHONPATH=$PWD pytest tests env: DATA: /data/scratch/cifar-10 LD_LIBRARY_PATH: /github/home/.tensornvme/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64