mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-07-05 11:37:14 +00:00
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
151 lines
4.8 KiB
Python
151 lines
4.8 KiB
Python
import copy
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.accelerator import get_accelerator
|
|
from colossalai.testing import spawn
|
|
from colossalai.testing.random import seed_all
|
|
from colossalai.utils import conditional_context
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
def __init__(self):
|
|
super(MlpModel, self).__init__()
|
|
self.linear1 = nn.Linear(128, 256)
|
|
self.linear2 = nn.Linear(256, 512)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
def exam_zero_1_2_grad_acc():
|
|
local_rank = torch.distributed.get_rank()
|
|
seed_all(2009)
|
|
device = get_accelerator().get_current_device()
|
|
# create model
|
|
zero1_model = MlpModel().to(device)
|
|
zero2_model = copy.deepcopy(zero1_model)
|
|
# create optimizer
|
|
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
|
|
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
|
|
zero1_optimizer = LowLevelZeroOptimizer(
|
|
zero1_optimizer, overlap_communication=True, initial_scale=32, clip_grad_norm=1.0, verbose=True
|
|
)
|
|
zero2_optimizer = LowLevelZeroOptimizer(
|
|
zero2_optimizer, overlap_communication=True, partition_grad=True, initial_scale=32, clip_grad_norm=1.0
|
|
)
|
|
# create data
|
|
seed_all(2021 + local_rank)
|
|
input_data1 = torch.randn(32, 128, device=device)
|
|
input_data2 = torch.randn(32, 128, device=device)
|
|
|
|
def fwd_bwd_func(number, cur_data, check_flag):
|
|
# zero-dp forward
|
|
zero1_output = zero1_model(cur_data)
|
|
zero2_output = zero2_model(cur_data)
|
|
assert torch.equal(zero1_output, zero2_output)
|
|
|
|
# zero-dp backward
|
|
zero1_optimizer.backward(zero1_output.sum().float())
|
|
zero2_optimizer.backward(zero2_output.sum().float())
|
|
|
|
fwd_bwd_func(0, input_data1, True)
|
|
fwd_bwd_func(1, input_data2, False)
|
|
|
|
# step
|
|
zero1_optimizer.step()
|
|
zero2_optimizer.step()
|
|
|
|
zero1_optimizer._force_wait_all_gather()
|
|
zero2_optimizer._force_wait_all_gather()
|
|
|
|
# check updated param
|
|
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
|
|
assert not hasattr(z1p, "_all_gather_handle")
|
|
assert torch.equal(z1p.data, z2p.data)
|
|
|
|
|
|
def exam_zero_1_grad_acc(sync):
|
|
local_rank = torch.distributed.get_rank()
|
|
seed_all(2008)
|
|
device = get_accelerator().get_current_device()
|
|
|
|
# create models
|
|
zero_model = MlpModel()
|
|
torch_model = copy.deepcopy(zero_model)
|
|
|
|
seed_all(2008)
|
|
zero_model = zero_model.to(device)
|
|
torch_model = DDP(torch_model.to(device), bucket_cap_mb=0)
|
|
|
|
# create optimizer
|
|
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1)
|
|
|
|
# we only test stage 1 here
|
|
# in `check_sharded_param_consistency.py`, we will test whether
|
|
# level 1 and 2 will produce exactly the same results
|
|
zero_optimizer = LowLevelZeroOptimizer(
|
|
zero_optimizer, overlap_communication=False, reduce_bucket_size=262144, clip_grad_norm=1.0
|
|
)
|
|
|
|
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1)
|
|
|
|
# create data
|
|
seed_all(2022 + local_rank)
|
|
input_data1 = torch.randn(32, 128, device=device)
|
|
input_data2 = torch.randn(32, 128, device=device)
|
|
|
|
def fwd_bwd_func(no_sync, cur_data, check_flag):
|
|
# zero1 fwd and bwd
|
|
with conditional_context(zero_optimizer.no_sync(), no_sync):
|
|
zero_output = zero_model(cur_data)
|
|
zero_optimizer.backward(zero_output.sum().float())
|
|
|
|
# torch-ddp fwd and bwd
|
|
with conditional_context(torch_model.no_sync(), no_sync):
|
|
torch_output = torch_model(cur_data)
|
|
assert torch.equal(zero_output, torch_output)
|
|
torch_output.sum().backward()
|
|
|
|
if check_flag:
|
|
# check grad
|
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
|
assert torch.equal(p.grad, z1p.grad)
|
|
|
|
fwd_bwd_func(sync, input_data1, sync)
|
|
fwd_bwd_func(False, input_data2, False)
|
|
|
|
zero_optimizer.step()
|
|
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0)
|
|
torch_optimizer.step()
|
|
|
|
# check updated param
|
|
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
|
|
# print(n, p.shape, torch.max(p.data), torch.max(z1p.data), torch.max(torch.abs(p.data - z1p.data)))
|
|
assert_close(p.data, z1p.data)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
|
|
|
|
exam_zero_1_grad_acc(sync=True)
|
|
exam_zero_1_grad_acc(sync=False)
|
|
exam_zero_1_2_grad_acc()
|
|
|
|
|
|
@pytest.mark.dist
|
|
def test_grad_accumulation():
|
|
spawn(run_dist, 2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_grad_accumulation()
|