Files
ColossalAI/colossalai/shardformer/modeling/llama.py
Cuiqing Li bce0f16702 [Feature] The first PR to Add TP inference engine, kv-cache manager and related kernels for our inference system (#4577)
* [infer] Infer/llama demo (#4503)

* add

* add infer example

* finish

* finish

* stash

* fix

* [Kernels]  add inference token attention kernel (#4505)

* add token forward

* fix tests

* fix comments

* add try import triton

* add adapted license

* add tests check

* [Kernels] add necessary kernels (llama & bloom) for attention forward and kv-cache manager  (#4485)

* added _vllm_rms_norm

* change place

* added tests

* added tests

* modify

* adding kernels

* added tests:

* adding kernels

* modify

* added

* updating kernels

* adding tests

* added tests

* kernel change

* submit

* modify

* added

* edit comments

* change name

* change commnets and fix import

* add

* added

* combine codes (#4509)

* [feature] add KV cache manager for llama & bloom inference (#4495)

* add kv cache memory manager

* add stateinfo during inference

* format

* format

* rename file

* add kv cache test

* revise on BatchInferState

* file dir change

* [Bug FIx] import llama context ops fix (#4524)

* added _vllm_rms_norm

* change place

* added tests

* added tests

* modify

* adding kernels

* added tests:

* adding kernels

* modify

* added

* updating kernels

* adding tests

* added tests

* kernel change

* submit

* modify

* added

* edit comments

* change name

* change commnets and fix import

* add

* added

* fix

* add ops into init.py

* add

* [Infer] Add TPInferEngine and fix file path (#4532)

* add engine for TP inference

* move file path

* update path

* fix TPInferEngine

* remove unused file

* add engine test demo

* revise TPInferEngine

* fix TPInferEngine, add test

* fix

* Add Inference test for llama (#4508)

* add kv cache memory manager

* add stateinfo during inference

* add

* add infer example

* finish

* finish

* format

* format

* rename file

* add kv cache test

* revise on BatchInferState

* add inference test for llama

* fix conflict

* feature: add some new features for llama engine

* adapt colossalai triton interface

* Change the parent class of llama  policy

* add nvtx

* move llama inference code to tensor_parallel

* fix __init__.py

* rm tensor_parallel

* fix: fix bugs in auto_policy.py

* fix:rm some unused codes

* mv colossalai/tpinference to colossalai/inference/tensor_parallel

* change __init__.py

* save change

* fix engine

* Bug fix: Fix hang

* remove llama_infer_engine.py

---------

Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>

* [infer] Add Bloom inference policy and replaced methods (#4512)

* add bloom inference methods and policy

* enable pass BatchInferState from model forward

* revise bloom infer layers/policies

* add engine for inference (draft)

* add test for bloom infer

* fix bloom infer policy and flow

* revise bloom test

* fix bloom file path

* remove unused codes

* fix bloom modeling

* fix dir typo

* fix trivial

* fix policy

* clean pr

* trivial fix

* Revert "[infer] Add Bloom inference policy and replaced methods (#4512)" (#4552)

This reverts commit 17cfa57140.

* [Doc] Add colossal inference doc (#4549)

* create readme

* add readme.md

* fix typos

* [infer] Add Bloom inference policy and replaced methods (#4553)

* add bloom inference methods and policy

* enable pass BatchInferState from model forward

* revise bloom infer layers/policies

* add engine for inference (draft)

* add test for bloom infer

* fix bloom infer policy and flow

* revise bloom test

* fix bloom file path

* remove unused codes

* fix bloom modeling

* fix dir typo

* fix trivial

* fix policy

* clean pr

* trivial fix

* trivial

* Fix Bugs In Llama Model Forward (#4550)

* add kv cache memory manager

* add stateinfo during inference

* add

* add infer example

* finish

* finish

* format

* format

* rename file

* add kv cache test

* revise on BatchInferState

* add inference test for llama

* fix conflict

* feature: add some new features for llama engine

* adapt colossalai triton interface

* Change the parent class of llama  policy

* add nvtx

* move llama inference code to tensor_parallel

* fix __init__.py

* rm tensor_parallel

* fix: fix bugs in auto_policy.py

* fix:rm some unused codes

* mv colossalai/tpinference to colossalai/inference/tensor_parallel

* change __init__.py

* save change

* fix engine

* Bug fix: Fix hang

* remove llama_infer_engine.py

* bug fix: fix bugs about infer_state.is_context_stage

* remove pollcies

* fix: delete unused code

* fix: delete unused code

* remove unused coda

* fix conflict

---------

Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>

* [doc] add colossal inference fig (#4554)

* create readme

* add readme.md

* fix typos

* upload fig

* [NFC] fix docstring for colossal inference (#4555)

Fix docstring and comments in kv cache manager and bloom modeling

* fix docstring in llama modeling (#4557)

* [Infer] check import vllm (#4559)

* change import vllm

* import apply_rotary_pos_emb

* change import location

* [DOC] add installation req (#4561)

* add installation req

* fix

* slight change

* remove empty

* [Feature] rms-norm transfer into inference llama.py  (#4563)

* add installation req

* fix

* slight change

* remove empty

* add rmsnorm polciy

* add

* clean codes

* [infer] Fix tp inference engine (#4564)

* fix engine prepare data

* add engine test

* use bloom for testing

* revise on test

* revise on test

* reset shardformer llama (#4569)

* [infer] Fix engine - tensors on different devices (#4570)


* fix diff device in engine

* [codefactor] Feature/colossal inference (#4579)

* code factors

* remove

* change coding (#4581)

* [doc] complete README of colossal inference (#4585)

* complete fig

* Update README.md

* [doc]update readme (#4586)

* update readme

* Update README.md

* bug fix: fix bus in llama and bloom (#4588)

* [BUG FIX]Fix test engine in CI and non-vllm kernels llama forward  (#4592)

* fix tests

* clean

* clean

* fix bugs

* add

* fix llama non-vllm kernels bug

* modify

* clean codes

* [Kernel]Rmsnorm fix (#4598)

* fix tests

* clean

* clean

* fix bugs

* add

* fix llama non-vllm kernels bug

* modify

* clean codes

* add triton rmsnorm

* delete vllm kernel flag

* [Bug Fix]Fix bugs in llama (#4601)

* fix tests

* clean

* clean

* fix bugs

* add

* fix llama non-vllm kernels bug

* modify

* clean codes

* bug fix: remove rotary_positions_ids

---------

Co-authored-by: cuiqing.li <lixx3527@gmail.com>

* [kernel] Add triton layer norm & replace norm for bloom (#4609)

* add layernorm for inference

* add test for layernorm kernel

* add bloom layernorm replacement policy

* trivial: path

* [Infer] Bug fix rotary embedding in llama (#4608)

* fix rotary embedding

* delete print

* fix init seq len bug

* rename pytest

* add benchmark for llama

* refactor codes

* delete useless code

* [bench] Add bloom inference benchmark (#4621)

* add bloom benchmark

* readme - update benchmark res

* trivial - uncomment for testing (#4622)

* [Infer] add check triton and cuda version for tests (#4627)

* fix rotary embedding

* delete print

* fix init seq len bug

* rename pytest

* add benchmark for llama

* refactor codes

* delete useless code

* add check triton and cuda

* Update sharder.py (#4629)

* [Inference] Hot fix some bugs and typos (#4632)

* fix

* fix test

* fix conflicts

* [typo]Comments fix (#4633)

* fallback

* fix commnets

* bug fix: fix some bugs in test_llama and test_bloom (#4635)

* [Infer] delete benchmark in tests and fix bug for llama and bloom (#4636)

* fix rotary embedding

* delete print

* fix init seq len bug

* rename pytest

* add benchmark for llama

* refactor codes

* delete useless code

* add check triton and cuda

* delete benchmark and fix infer bugs

* delete benchmark for tests

* delete useless code

* delete bechmark function in utils

* [Fix] Revise TPInferEngine, inference tests and benchmarks (#4642)

* [Fix] revise TPInferEngine methods and inference tests

* fix llama/bloom infer benchmarks

* fix infer tests

* trivial fix: benchmakrs

* trivial

* trivial: rm print

* modify utils filename for infer ops test (#4657)

* [Infer] Fix TPInferEngine init & inference tests, benchmarks (#4670)

* fix engine funcs

* TPInferEngine: receive shard config in init

* benchmarks: revise TPInferEngine init

* benchmarks: remove pytest decorator

* trivial fix

* use small model for tests

* [NFC] use args for infer benchmarks (#4674)

* revise infer default (#4683)

* [Fix] optimize/shard model in TPInferEngine init (#4684)

* remove using orig model in engine

* revise inference tests

* trivial: rename

---------

Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com>
Co-authored-by: Xu Kai <xukai16@foxmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: yuanheng-zhao <jonathan.zhaoyh@gmail.com>
Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
2023-09-12 01:22:56 +08:00

472 lines
21 KiB
Python

import warnings
from typing import Callable, List, Optional, Tuple
import torch
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.models.llama.modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
class LlamaPipelineForwards:
'''
This class serves as a micro library for forward function substitution of Llama models
under pipeline setting.
'''
@staticmethod
def llama_model_forward(
self: LlamaModel,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
):
logger = logging.get_logger(__name__)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if stage_manager.is_first_stage():
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
else:
input_shape = hidden_states.shape[:-1]
batch_size, seq_length = input_shape
device = hidden_states.device
seq_length_with_past = seq_length
past_key_values_length = 0
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
if use_cache:
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
use_cache = False
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
position_ids = torch.arange(past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
# embed positions, for the first stage, hidden_states is the input embeddings,
# for the other stages, hidden_states is the output of the previous stage
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past),
dtype=torch.bool,
device=hidden_states.device)
attention_mask = self._prepare_decoder_attention_mask(attention_mask, (batch_size, seq_length), hidden_states,
past_key_values_length)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
start_idx, end_idx = stage_index[0], stage_index[1]
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if stage_manager.is_last_stage():
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if stage_manager.is_last_stage():
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# always return dict for imediate stage
return {'hidden_states': hidden_states}
@staticmethod
def llama_for_causal_lm_forward(
self: LlamaForCausalLM,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
):
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
logger = logging.get_logger(__name__)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = LlamaPipelineForwards.llama_model_forward(
self.model,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
)
past_key_values = None
all_hidden_states = None
all_self_attentions = None
all_cross_attentions = None
if stage_manager.is_last_stage():
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
else:
hidden_states = outputs.get('hidden_states')
return {'hidden_states': hidden_states}
@staticmethod
def llama_for_sequence_classification_forward(
self: LlamaForSequenceClassification,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
stage_manager: Optional[PipelineStageManager] = None,
hidden_states: Optional[torch.FloatTensor] = None,
stage_index: Optional[List[int]] = None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
logger = logging.get_logger(__name__)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
if output_attentions:
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
output_attentions = False
if output_hidden_states:
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
output_hidden_states = False
transformer_outputs = LlamaPipelineForwards.llama_model_forward(
self.model,
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
stage_manager=stage_manager,
hidden_states=hidden_states,
stage_index=stage_index,
)
if input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
batch_size = hidden_states.shape[0]
if stage_manager.is_last_stage():
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
else:
hidden_states = transformer_outputs.get('hidden_states')
return {'hidden_states': hidden_states}
def get_llama_flash_attention_forward():
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
llama_version = 2
try:
from transformers.models.llama.modeling_llama import repeat_kv
except:
warnings.warn("using llamav1, llamav1 hasn't repeat_kv function")
llama_version = 1
from colossalai.kernel.cuda_native import AttnMaskType, ColoAttention
def forward(
self: LlamaAttention,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
assert q_len % 4 == 0, "Flash Attention Error: The sequence length should be a multiple of 4."
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
if llama_version == 2:
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
me_input_shape = (bsz, q_len, self.num_heads, self.head_dim)
query_states = query_states.transpose(1, 2).contiguous().view(*me_input_shape)
key_states = key_states.transpose(1, 2).contiguous().view(*me_input_shape)
value_states = value_states.transpose(1, 2).contiguous().view(*me_input_shape)
flash_attention_mask = None
attn_mask_type = AttnMaskType.causal
if attention_mask != None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}")
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous()
attn_mask_type = AttnMaskType.paddedcausal
attention = ColoAttention(embed_dim=self.hidden_size, num_heads=self.num_heads)
attn_output = attention(query_states,
key_states,
value_states,
attn_mask=flash_attention_mask,
attn_mask_type=attn_mask_type)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
return forward