ColossalAI/colossalai/legacy/inference/serving/ray_serve/send_requests.py
Xu Kai fd6482ad8c
[inference] Refactor inference architecture (#5057)
* [inference] support only TP (#4998)

* support only tp

* enable tp

* add support for bloom (#5008)

* [refactor] refactor gptq and smoothquant llama (#5012)

* refactor gptq and smoothquant llama

* fix import error

* fix linear import torch-int

* fix smoothquant llama import error

* fix import accelerate error

* fix bug

* fix import smooth cuda

* fix smoothcuda

* [Inference Refactor] Merge chatglm2 with pp and tp (#5023)

merge chatglm with pp and tp

* [Refactor] remove useless inference code (#5022)

* remove useless code

* fix quant model

* fix test import bug

* mv original inference legacy

* fix chatglm2

* [Refactor] refactor policy search and quant type controlling in inference (#5035)

* [Refactor] refactor policy search and quant type controling in inference

* [inference] update readme (#5051)

* update readme

* update readme

* fix architecture

* fix table

* fix table

* [inference] udpate example (#5053)

* udpate example

* fix run.sh

* fix rebase bug

* fix some errors

* update readme

* add some features

* update interface

* update readme

* update benchmark

* add requirements-infer

---------

Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
2023-11-19 21:05:05 +08:00

28 lines
764 B
Python

import ray
import requests
@ray.remote
def send_query(text):
resp = requests.get("http://localhost:8000/?text={}".format(text))
return resp.text
test_sentences = [
"Introduce some landmarks in Beijing",
"What is the weather today",
"Coding requires practice and patience",
"Rainy days inspire cozy reading",
"Laughter is contagious and heartwarming",
"Hiking mountains builds strength and resilience",
"Family bonds grow stronger with time",
"Science unlocks mysteries of the universe",
"Music soothes the soul and ignites passion",
"Artistic expression knows no boundaries",
]
results = ray.get([send_query.remote(text) for text in test_sentences])
print("Result returned:")
for res in results:
print(res)