mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 02:26:51 +00:00
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
324 lines
14 KiB
Python
324 lines
14 KiB
Python
import copy
|
|
from typing import Any, Callable, Dict, Iterable, List, Tuple
|
|
|
|
import torch
|
|
from torch.fx.node import Node, map_arg
|
|
|
|
from colossalai.fx.profiler import activation_size, parameter_size
|
|
|
|
from .utils import delete_free_var_from_last_use, find_idx_by_name, get_node_shape, is_non_memory_node
|
|
|
|
|
|
class EstimateMemory(object):
|
|
"""
|
|
Estimate memory with chunk
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def _get_meta_node_size(self, x):
|
|
x = x.meta["tensor_meta"]
|
|
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
|
|
return x
|
|
|
|
def _get_output_node(self, n):
|
|
out_size = activation_size(n.meta["fwd_out"])
|
|
out_node = [n.name] if out_size > 0 else []
|
|
return out_size, out_node
|
|
|
|
def _get_output_node_size(self, n):
|
|
return self._get_output_node(n)[0]
|
|
|
|
def _add_active_node(self, n, active_list):
|
|
new_active = self._get_output_node(n)[1]
|
|
if n.op == "placeholder" and get_node_shape(n) is not None:
|
|
new_active.append(n.name)
|
|
for i in new_active:
|
|
if i not in active_list and get_node_shape(n) is not None:
|
|
active_list.append(i)
|
|
|
|
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
|
|
delete_size = 0
|
|
delete_node = []
|
|
if user.op not in ("output",):
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
if len(user.users) == 0:
|
|
nodes_to_delete.append(user)
|
|
if to_keep is not None:
|
|
keep_list = []
|
|
for n in nodes_to_delete:
|
|
if n.name in to_keep:
|
|
keep_list.append(n)
|
|
for n in keep_list:
|
|
if n in nodes_to_delete:
|
|
nodes_to_delete.remove(n)
|
|
if len(nodes_to_delete):
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
delete_size = sum([i[0] for i in out_node])
|
|
for i in range(len(out_node)):
|
|
if out_node[i][0] > 0:
|
|
delete_node.append(out_node[i][1][0])
|
|
elif nodes_to_delete[i].op == "placeholder":
|
|
delete_node.append(nodes_to_delete[i].name)
|
|
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
|
|
# delete_node.append(nodes_to_delete[i].name)
|
|
return delete_size, delete_node
|
|
|
|
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
|
|
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
|
|
|
|
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
|
|
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
|
|
for i in delete_node:
|
|
if i in active_list:
|
|
active_list.remove(i)
|
|
|
|
def _get_chunk_inputs_size(self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx):
|
|
nodes_to_delete = []
|
|
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
|
|
chunk_input_users = chunk_input.users.keys()
|
|
chunk_input_users_idx = [find_idx_by_name(i.name, node_list) for i in chunk_input_users]
|
|
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
|
|
if chunk_input not in nodes_to_delete:
|
|
nodes_to_delete.append(chunk_input)
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
delete_size = sum([i[0] for i in out_node])
|
|
return delete_size
|
|
|
|
def _get_last_usr(self, nodes):
|
|
node_to_last_use: Dict[Node, Node] = {}
|
|
user_to_last_uses: Dict[Node, List[Node]] = {}
|
|
|
|
def register_last_uses(n: Node, user: Node):
|
|
if n not in node_to_last_use:
|
|
node_to_last_use[n] = user
|
|
user_to_last_uses.setdefault(user, []).append(n)
|
|
|
|
for node in reversed(nodes):
|
|
map_arg(node.args, lambda n: register_last_uses(n, node))
|
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
|
return user_to_last_uses
|
|
|
|
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
|
|
mem = 0
|
|
not_contiguous_ops = ["permute"]
|
|
inherit_contiguous_ops = ["transpose", "view"]
|
|
|
|
if node.op == "call_function" and any(n in node.name for n in ["matmul", "reshape"]):
|
|
for n in node.args:
|
|
if n in not_contiguous_list:
|
|
# matmul won't change origin tensor, but create a tmp copy
|
|
mem += self._get_output_node_size(n)
|
|
elif node.op == "call_module":
|
|
for n in node.args:
|
|
if n in not_contiguous_list:
|
|
# module will just make origin tensor to contiguous
|
|
if delete:
|
|
not_contiguous_list.remove(n)
|
|
elif node.op == "call_method" and any(i in node.name for i in not_contiguous_ops):
|
|
if node not in not_contiguous_list:
|
|
not_contiguous_list.append(node)
|
|
return mem
|
|
|
|
def _get_chunk_ratio(self, node, chunk_node_dim, chunk_size):
|
|
if node not in chunk_node_dim:
|
|
return 1.0
|
|
node_shape = get_node_shape(node)
|
|
chunk_dim = chunk_node_dim[node]["chunk_dim"]
|
|
if chunk_dim is None:
|
|
return 1.0
|
|
else:
|
|
return float(chunk_size) / node_shape[chunk_dim]
|
|
|
|
def _get_chunk_delete_node_size(self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names):
|
|
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
|
|
# return 0
|
|
if user.op in ("placeholder", "output"):
|
|
return 0
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
if len(user.users) == 0:
|
|
nodes_to_delete.append(user)
|
|
delete_size = 0
|
|
for n in nodes_to_delete:
|
|
if n.name in chunk_inputs_names:
|
|
continue
|
|
delete_size += self._get_output_node_size(n) * chunk_ratio
|
|
return delete_size
|
|
|
|
def _print_mem_log(self, log, nodes, title=None):
|
|
if title:
|
|
print(title)
|
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
|
print("%s:%.2f \t" % (n.name, l), end="")
|
|
if (idx + 1) % 3 == 0:
|
|
print("")
|
|
print("\n")
|
|
|
|
def _print_compute_op_mem_log(self, log, nodes, title=None):
|
|
if title:
|
|
print(title)
|
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
|
if n.op in ["placeholder", "get_attr", "output"]:
|
|
continue
|
|
if any(i in n.name for i in ["getitem", "getattr"]):
|
|
continue
|
|
print("%s:%.2f \t" % (n.name, l), end="")
|
|
if (idx + 1) % 3 == 0:
|
|
print("")
|
|
print("\n")
|
|
|
|
def estimate_chunk_inference_mem(
|
|
self,
|
|
node_list: List,
|
|
chunk_infos=None,
|
|
print_mem=False,
|
|
):
|
|
"""
|
|
Estimate inference memory with chunk
|
|
|
|
Args:
|
|
node_list (List): _description_
|
|
chunk_infos (Dict): Chunk information. Defaults to None.
|
|
print_mem (bool): Wether to print peak memory of every node. Defaults to False.
|
|
|
|
Returns:
|
|
act_memory_peak_log (List): peak memory of every node
|
|
act_memory_after_node_log (List): memory after excuting every node
|
|
active_node_list_log (List): active nodes of every node. active nodes refer to
|
|
nodes generated but not deleted.
|
|
"""
|
|
act_memory = 0.0
|
|
act_memory_peak_log = []
|
|
act_memory_after_node_log = []
|
|
active_node_list = []
|
|
active_node_list_log = []
|
|
not_contiguous_list = []
|
|
user_to_last_uses = self._get_last_usr(node_list)
|
|
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
|
|
delete_free_var_from_last_use(user_to_last_uses_no_free_var)
|
|
|
|
use_chunk = True if chunk_infos is not None else False
|
|
chunk_within = False
|
|
chunk_region_idx = None
|
|
chunk_ratio = 1 # use it to estimate chunk mem
|
|
chunk_inputs_names = []
|
|
|
|
if use_chunk:
|
|
chunk_regions = [i["region"] for i in chunk_infos]
|
|
chunk_starts = [i[0] for i in chunk_regions]
|
|
chunk_ends = [i[1] for i in chunk_regions]
|
|
chunk_inputs = [i["inputs"] for i in chunk_infos]
|
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
|
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i
|
|
] + [j.name for i in chunk_inputs_non_chunk for j in i]
|
|
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
|
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos]
|
|
chunk_sizes = [i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos]
|
|
|
|
for idx, node in enumerate(node_list):
|
|
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
|
|
if use_chunk and idx in chunk_starts:
|
|
chunk_within = True
|
|
chunk_region_idx = chunk_starts.index(idx)
|
|
act_memory += self._get_output_node_size(chunk_outputs[chunk_region_idx]) / (1024**2)
|
|
|
|
# determine chunk ratio for current node
|
|
if chunk_within:
|
|
chunk_ratio = self._get_chunk_ratio(
|
|
node,
|
|
chunk_node_dim[chunk_region_idx],
|
|
chunk_sizes[chunk_region_idx],
|
|
)
|
|
|
|
# if node is placeholder, just add the size of the node
|
|
if node.op == "placeholder":
|
|
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
|
|
act_memory_peak_log.append(act_memory)
|
|
# skip output
|
|
elif node.op == "output":
|
|
continue
|
|
# no change for non compute node
|
|
elif is_non_memory_node(node):
|
|
act_memory_peak_log.append(act_memory)
|
|
# node is a compute op
|
|
# calculate tmp, output node and delete node memory
|
|
else:
|
|
# forward memory
|
|
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
|
|
act_memory += (self._get_contiguous_memory(node, not_contiguous_list) * chunk_ratio / (1024**2))
|
|
act_memory += (self._get_output_node_size(node) * chunk_ratio / (1024**2))
|
|
# record max act memory
|
|
act_memory_peak_log.append(act_memory)
|
|
# delete useless memory
|
|
act_memory -= (self._get_contiguous_memory(node, not_contiguous_list, delete=True) * chunk_ratio /
|
|
(1024**2))
|
|
# delete unused vars not in chunk_input_list
|
|
# we can't delete input nodes until chunk ends
|
|
if chunk_within:
|
|
act_memory -= self._get_chunk_delete_node_size(
|
|
node,
|
|
user_to_last_uses_no_free_var,
|
|
chunk_ratio,
|
|
chunk_inputs_names,
|
|
) / (1024**2)
|
|
else:
|
|
act_memory -= self._get_delete_node_size(node, user_to_last_uses_no_free_var,
|
|
chunk_inputs_names) / (1024**2)
|
|
|
|
# log active node, only effective without chunk
|
|
self._add_active_node(node, active_node_list)
|
|
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
|
|
|
|
# if node in chunk end nodes, restore chunk settings
|
|
if use_chunk and idx in chunk_ends:
|
|
act_memory -= (self._get_output_node_size(node) * chunk_ratio / (1024**2))
|
|
act_memory -= self._get_chunk_inputs_size(
|
|
chunk_inputs[chunk_region_idx],
|
|
chunk_inputs_non_chunk[chunk_region_idx],
|
|
node_list,
|
|
chunk_regions[chunk_region_idx][1],
|
|
) / (1024**2)
|
|
chunk_within = False
|
|
chunk_ratio = 1
|
|
chunk_region_idx = None
|
|
|
|
act_memory_after_node_log.append(act_memory)
|
|
active_node_list_log.append(copy.deepcopy(active_node_list))
|
|
|
|
if print_mem:
|
|
print("with chunk" if use_chunk else "without chunk")
|
|
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
|
|
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
|
|
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
|
|
# self._print_compute_op_mem_log(
|
|
# act_memory_after_node_log, node_list, "after"
|
|
# )
|
|
|
|
# param_memory = parameter_size(gm)
|
|
# all_memory = act_memory + param_memory
|
|
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log
|
|
|
|
def get_active_nodes(self, node_list: List) -> List:
|
|
"""
|
|
Get active nodes for every node
|
|
|
|
Args:
|
|
node_list (List): _description_
|
|
|
|
Returns:
|
|
active_node_list_log (List): active nodes of every node. active nodes refer to
|
|
nodes generated but not deleted.
|
|
"""
|
|
active_node_list = []
|
|
active_node_list_log = []
|
|
user_to_last_uses = self._get_last_usr(node_list)
|
|
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
|
|
delete_free_var_from_last_use(user_to_last_uses_no_free_var)
|
|
for _, node in enumerate(node_list):
|
|
# log active node, only effective without chunk
|
|
self._add_active_node(node, active_node_list)
|
|
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
|
|
active_node_list_log.append(copy.deepcopy(active_node_list))
|
|
return active_node_list_log
|