mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 02:26:51 +00:00
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
704 lines
26 KiB
Python
704 lines
26 KiB
Python
import copy
|
|
from typing import Dict, List, Tuple
|
|
|
|
from torch.fx.node import Node
|
|
|
|
from .utils import find_first_tensor_arg, find_idx_by_name, flat_list, get_node_shape
|
|
|
|
|
|
class TraceIndice(object):
|
|
"""
|
|
Trace all indice infomation for every node.
|
|
|
|
Indice is a logical concept. Equal dims can been treated as one indice.
|
|
eg. dim(x1) = [a, b, c]
|
|
dim(x2) = [d, e, f]
|
|
and we have x3 = x1 * x2.
|
|
then a=d, b=e, c=f, due to the broadcast property,
|
|
dim(x1)=dim(x2)=dim(x3)=[a, b, c]
|
|
This class will record every node's dims' indice, compute and source.
|
|
|
|
Attibutes:
|
|
node_list (List)
|
|
indice_trace_list (List): [{"indice": [...], "compute": [...], "source": [...]}, {...}]
|
|
indice_view_list (Dict): not used for now
|
|
indice_count (int): record indice number
|
|
|
|
Args:
|
|
node_list (List)
|
|
"""
|
|
|
|
def __init__(self, node_list: List[Node]) -> None:
|
|
self.node_list = node_list
|
|
self.indice_trace_list = self._init_indice_trace_list()
|
|
self.indice_view_list = {}
|
|
self.indice_count = -1
|
|
self.trace_range = []
|
|
self.active_node_list = []
|
|
|
|
def _init_indice_trace_list(self):
|
|
indice_trace_list = []
|
|
for n in self.node_list:
|
|
if get_node_shape(n) != None:
|
|
cur_trace = {
|
|
"indice": [None for _ in range(len(get_node_shape(n)))],
|
|
"compute": [[] for _ in range(len(get_node_shape(n)))],
|
|
"source": [{} for _ in range(len(get_node_shape(n)))],
|
|
}
|
|
else:
|
|
cur_trace = {"indice": [], "compute": [], "source": []}
|
|
indice_trace_list.append(cur_trace)
|
|
return indice_trace_list
|
|
|
|
def set_trace_range(self, trace_range: List, active_node_list: List) -> None:
|
|
self.trace_range = trace_range
|
|
self.active_node_list = active_node_list
|
|
|
|
def _add_indice(self):
|
|
"""
|
|
Update the count and return it. To record the idx number.
|
|
|
|
Returns:
|
|
indice_count: int
|
|
"""
|
|
self.indice_count += 1
|
|
return self.indice_count
|
|
|
|
def _del_dim(self, idx, dim_idx):
|
|
self.indice_trace_list[idx]["indice"].pop(dim_idx)
|
|
self.indice_trace_list[idx]["compute"].pop(dim_idx)
|
|
self.indice_trace_list[idx]["source"].pop(dim_idx)
|
|
|
|
def _add_dim(self, node_idx, dim_idx):
|
|
self.indice_trace_list[node_idx]["indice"].insert(dim_idx, self._add_indice())
|
|
self.indice_trace_list[node_idx]["compute"].insert(dim_idx, [])
|
|
self.indice_trace_list[node_idx]["source"].insert(dim_idx, {})
|
|
|
|
def _transform_indice(self, node, node_dim):
|
|
node_idx = self._find_indice_trace_from_node(node)
|
|
dims = list(range(len(node_idx)))
|
|
return dims[node_dim]
|
|
|
|
def _inherit_indice(self, node_from, node_from_dim, node_to, node_to_dim):
|
|
node_from_dim = self._transform_indice(node_from, node_from_dim)
|
|
node_to_dim = self._transform_indice(node_to, node_to_dim)
|
|
node_from_trace = self._find_trace_from_node(node_from)
|
|
node_to_trace = self._find_trace_from_node(node_to)
|
|
node_to_trace["indice"][node_to_dim] = node_from_trace["indice"][node_from_dim]
|
|
node_to_trace["compute"][node_to_dim] = copy.deepcopy(node_from_trace["compute"][node_from_dim])
|
|
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
|
|
|
|
def _inherit_all_computation(self, node_from, node_to):
|
|
node_from_compute = self._find_compute_trace_from_node(node_from)
|
|
node_to_compute = self._find_compute_trace_from_node(node_to)
|
|
assert len(node_from_compute) == len(node_to_compute)
|
|
for i in range(len(node_from_compute)):
|
|
self._add_source(node_from, i, node_to, i)
|
|
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
|
|
|
|
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
|
|
node_from_dim = self._transform_indice(node_from, node_from_dim)
|
|
node_from_trace_source = self._find_source_trace_from_node(node_from)
|
|
node_to_dim = self._transform_indice(node_to, node_to_dim)
|
|
node_to_trace_source = self._find_source_trace_from_node(node_to)
|
|
node_from_idx = find_idx_by_name(node_from.name, self.node_list)
|
|
if init:
|
|
node_to_trace_source[node_to_dim] = {}
|
|
# add dim to cur new source
|
|
if node_from_idx not in node_to_trace_source[node_to_dim]:
|
|
node_to_trace_source[node_to_dim][node_from_idx] = [node_from_dim]
|
|
else:
|
|
if node_from_dim not in node_to_trace_source[node_to_dim][node_from_idx]:
|
|
node_to_trace_source[node_to_dim][node_from_idx].append(node_from_dim)
|
|
# update inputs source
|
|
for node_idx, node_dim in node_from_trace_source[node_from_dim].items():
|
|
if node_idx not in node_to_trace_source[node_to_dim]:
|
|
node_to_trace_source[node_to_dim][node_idx] = copy.deepcopy(node_dim)
|
|
else:
|
|
for d in node_dim:
|
|
if d not in node_to_trace_source[node_to_dim][node_idx]:
|
|
node_to_trace_source[node_to_dim][node_idx].append(d)
|
|
|
|
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
|
|
if exclude == None:
|
|
exclude = []
|
|
else:
|
|
exclude = [self._transform_indice(node_to, i) for i in exclude]
|
|
node_from_compute = self._find_compute_trace_from_node(node_from)
|
|
node_to_compute = self._find_compute_trace_from_node(node_to)
|
|
# assert len(node_from_compute) == len(node_to_compute)
|
|
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
|
|
if self._transform_indice(node_to, i) in exclude:
|
|
continue
|
|
self._add_source(node_from, i, node_to, i)
|
|
for j in node_from_compute[i]:
|
|
if j not in node_to_compute[i]:
|
|
node_to_compute[i].append(j)
|
|
|
|
def _mark_computation(self, node, idx, dim):
|
|
"""
|
|
Mark some dims of node as computed.
|
|
|
|
Args:
|
|
node (node)
|
|
idx (int): node index
|
|
dim (list or int): dims to be marked as computed
|
|
"""
|
|
if isinstance(dim, int):
|
|
dim = [dim]
|
|
dims = list(range(len(get_node_shape(node))))
|
|
for d in dim:
|
|
cur_dim = dims[d]
|
|
if idx not in self.indice_trace_list[idx]["compute"][cur_dim]:
|
|
self.indice_trace_list[idx]["compute"][cur_dim].append(idx)
|
|
|
|
def _find_trace_from_node(self, node):
|
|
"""
|
|
Find node idx and compute trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
idx (list): idx of the node
|
|
compute (list): computed idx of the node.
|
|
"""
|
|
node_idx = find_idx_by_name(node.name, self.node_list)
|
|
node_dict = self.indice_trace_list[node_idx]
|
|
return node_dict
|
|
|
|
def _find_source_trace_from_node(self, node):
|
|
"""
|
|
Find node source trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
idx (list): idx of the node
|
|
compute (list): computed idx of the node.
|
|
"""
|
|
node_idx = find_idx_by_name(node.name, self.node_list)
|
|
node_dict = self.indice_trace_list[node_idx]
|
|
return node_dict["source"]
|
|
|
|
def _find_indice_trace_from_node(self, node):
|
|
"""
|
|
Find node idx trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
idx (list): idx of the node
|
|
"""
|
|
node_idx = find_idx_by_name(node.name, self.node_list)
|
|
return self.indice_trace_list[node_idx]["indice"]
|
|
|
|
def _find_compute_trace_from_node(self, node):
|
|
"""
|
|
Find node compute trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
compute (list): computed idx of the node.
|
|
"""
|
|
node_idx = find_idx_by_name(node.name, self.node_list)
|
|
return self.indice_trace_list[node_idx]["compute"]
|
|
|
|
def _assign_indice_as_input(self, node: Node, node_idx: int, input_node=None):
|
|
"""
|
|
Assign node's trace as its input node.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
if input_node == None:
|
|
input_node = find_first_tensor_arg(node)
|
|
input_node_idx = find_idx_by_name(input_node.name, self.node_list)
|
|
input_node_idx_trace = self.indice_trace_list[input_node_idx]["indice"]
|
|
|
|
new_idx_trace = copy.deepcopy(input_node_idx_trace)
|
|
self.indice_trace_list[node_idx]["indice"] = new_idx_trace
|
|
|
|
self._inherit_all_computation(input_node, node)
|
|
|
|
def _assign_all_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Add new indice for all node's dims.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
shape = node.meta["tensor_meta"].shape
|
|
if shape is None:
|
|
return
|
|
new_trace = []
|
|
for _ in shape:
|
|
new_trace.append(self._add_indice())
|
|
self.indice_trace_list[node_idx]["indice"] = new_trace
|
|
|
|
def _assign_transpose_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for transpose op.
|
|
1. swap input's dim according to transpose args
|
|
2. inherit input's computation
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
input_node = node.args[0]
|
|
tranpose_dim = node.args[1:]
|
|
|
|
self._assign_indice_as_input(node, node_idx, input_node)
|
|
self._inherit_indice(input_node, tranpose_dim[1], node, tranpose_dim[0])
|
|
self._inherit_indice(input_node, tranpose_dim[0], node, tranpose_dim[1])
|
|
|
|
def _assign_permute_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for permute op.
|
|
1. swap input's dim according to permute args
|
|
2. inherit input's computation
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
permute_dim = flat_list(node.args[1:])
|
|
input_node = node.args[0]
|
|
|
|
self._assign_indice_as_input(node, node_idx, input_node)
|
|
for idx, d in enumerate(permute_dim):
|
|
self._inherit_indice(input_node, d, node, idx)
|
|
|
|
def _assign_linear_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for linear op.
|
|
1. copy trace from input node and change last indice accroding to weight
|
|
2. mark equal for input node last indice, weight first dim and bias dim.
|
|
3. inherit input's computation, mark computation for last dim.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
if len(node.args) == 2:
|
|
_, weight = node.args
|
|
else:
|
|
_, weight, _ = node.args
|
|
|
|
self._assign_indice_as_input(node, node_idx)
|
|
self._inherit_indice(weight, 1, node, -1)
|
|
|
|
self._mark_computation(node, node_idx, [-1])
|
|
|
|
def _assign_matmul_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for matmul op.
|
|
1. copy trace from matmul_left and change last indice accroding to matmul_right. (assert they have same length)
|
|
2. mark equal for input matmul_left -1 indice and matmul_right -2 dim.
|
|
3. inherit matmul_left and matmul_right computation, mark computation for last dim.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
matmul_left, matmul_right = node.args
|
|
|
|
assert len(get_node_shape(matmul_left)) == len(get_node_shape(matmul_right))
|
|
self._assign_indice_as_input(node, node_idx, matmul_left)
|
|
self._inherit_indice(matmul_right, -1, node, -1)
|
|
|
|
self._mark_computation_from_node(matmul_right, node, [-1, -2])
|
|
self._mark_computation(node, node_idx, [-1])
|
|
|
|
def _assign_layernorm_indice(self, node, idx):
|
|
"""
|
|
Assign indice for layernorm op.
|
|
1. assign indice as input node
|
|
2. inherit computation and mark last 2 dims as computed.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_indice_as_input(node, idx)
|
|
self._mark_computation(node, idx, [-1])
|
|
|
|
def _assign_elementwise_indice(self, node, idx):
|
|
"""
|
|
Assign indice for element-wise op (eg. relu sigmoid add mul).
|
|
1. assign indice as input node
|
|
2. inherit computation from all input nodes.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_indice_as_input(node, idx)
|
|
nodes_in = []
|
|
for node_in in node.args:
|
|
if type(node_in) == type(node):
|
|
nodes_in.append(node_in)
|
|
self._mark_computation_from_node(node_in, node)
|
|
assert len(nodes_in) <= 2
|
|
|
|
def _assgin_no_change_indice(self, node, idx):
|
|
self._assign_indice_as_input(node, idx)
|
|
for node_in in node.args:
|
|
if type(node_in) == type(node):
|
|
self._mark_computation_from_node(node_in, node)
|
|
|
|
def _assign_einsum_indice(self, node, idx):
|
|
"""
|
|
Assign indice for einsum op.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
patterns = node.args[0]
|
|
input_nodes = node.args[1:]
|
|
|
|
patterns = patterns.replace(" ", "")
|
|
left, right = patterns.split("->")
|
|
left = left.split(",")
|
|
|
|
if '...' in right:
|
|
replace_list = "!@#$%^&*"
|
|
target_len = len(get_node_shape(node))
|
|
add_len = target_len - len(right) + 3
|
|
replace_str = replace_list[:add_len]
|
|
right = right.replace("...", replace_str)
|
|
for ll in range(len(left)):
|
|
left[ll] = left[ll].replace("...", replace_str)
|
|
|
|
all_index = []
|
|
for i in left:
|
|
for c in i:
|
|
all_index.append(c)
|
|
all_index = set(all_index)
|
|
|
|
for right_idx, right_indice in enumerate(right):
|
|
for left_idx, left_str in enumerate(left):
|
|
if right_indice in left_str:
|
|
source_idx = left_str.index(right_indice)
|
|
self._inherit_indice(input_nodes[left_idx], source_idx, node, right_idx)
|
|
|
|
def _assign_softmax_indice(self, node, idx):
|
|
"""
|
|
Assign indice for softmax op.
|
|
1. assign indice as input node
|
|
2. inherit computation and mark softmax dim as computed.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_indice_as_input(node, idx)
|
|
self._mark_computation(node, idx, [node.kwargs["dim"]])
|
|
|
|
def _assign_unsqueeze_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for unsqueeze op.
|
|
1. assign new indice for unsqueeze dim
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._del_dim(node_idx, -1)
|
|
self._assign_indice_as_input(node, node_idx)
|
|
dim_idx = node.args[1]
|
|
# unsqueeze(-1) = unsqueeze(shape_num + 1)
|
|
if dim_idx < 0:
|
|
dim_idx = list(range(len(get_node_shape(node))))[dim_idx]
|
|
self._add_dim(node_idx, dim_idx)
|
|
|
|
def _assign_dropout_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for unsqueeze op.
|
|
1. assign new indice for unsqueeze dim
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_indice_as_input(node, node_idx)
|
|
|
|
def _assign_ones_like_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for oneslike op.
|
|
1. assign new indice for all dim
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_all_indice(node, node_idx)
|
|
|
|
def _assign_cat_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for cat op.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
nodes_in = flat_list(node.args[0])
|
|
self._assign_indice_as_input(node, node_idx, input_node=nodes_in[0])
|
|
for n in nodes_in[1:]:
|
|
self._mark_computation_from_node(n, node)
|
|
cat_dim = node.kwargs["dim"]
|
|
self._del_dim(node_idx, cat_dim)
|
|
self._add_dim(node_idx, cat_dim)
|
|
|
|
def _assign_sum_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for sum op.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
nodes_in = flat_list(node.args[0])
|
|
self._add_dim(node_idx, 0)
|
|
self._assign_indice_as_input(node, node_idx, input_node=nodes_in[0])
|
|
for n in nodes_in[1:]:
|
|
self._mark_computation_from_node(n, node)
|
|
cat_dim = node.kwargs["dim"]
|
|
self._del_dim(node_idx, cat_dim)
|
|
|
|
def _assign_getitem_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for getitem.
|
|
getitem can act like slice sometimes
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
node_args = flat_list(node.args[1:])
|
|
flag = False
|
|
for node_arg in node_args:
|
|
node_arg_str = str(node_arg)
|
|
if any(i == node_arg_str for i in ["None", "Ellipsis"]):
|
|
flag = True
|
|
break
|
|
if "slice" in node_arg_str:
|
|
flag = True
|
|
break
|
|
if flag == False:
|
|
return
|
|
|
|
# node args should be like [Ellipsis, slice(start, step, end), None]
|
|
node_shape = get_node_shape(node)
|
|
origin_idx_count = 0
|
|
new_idx_count = 0
|
|
new_dim_num = sum([1 if str(i) == "None" else 0 for i in node_args])
|
|
for _ in range(new_dim_num):
|
|
self._del_dim(node_idx, 0)
|
|
delete_dim_num = sum([1 if str(i) == "0" else 0 for i in node_args])
|
|
for _ in range(delete_dim_num):
|
|
self._add_dim(node_idx, 0)
|
|
self._assign_indice_as_input(node, node_idx)
|
|
|
|
for _, node_arg in enumerate(node_args):
|
|
node_arg_str = str(node_arg)
|
|
# Ellipsis means [..., ]
|
|
if "Ellipsis" == node_arg_str:
|
|
shape_gap = len(node_shape) - len(node_args) + 1
|
|
origin_idx_count += shape_gap
|
|
new_idx_count += shape_gap
|
|
# slice(None, None, None) means all indexes
|
|
elif "slice" in node_arg_str:
|
|
if "slice(None, None, None)" != node_arg_str:
|
|
self._del_dim(node_idx, new_idx_count)
|
|
self._add_dim(node_idx, new_idx_count)
|
|
origin_idx_count += 1
|
|
new_idx_count += 1
|
|
# None means a new dim
|
|
elif "None" == node_arg_str:
|
|
self._add_dim(node_idx, new_idx_count)
|
|
new_idx_count += 1
|
|
elif "0" == node_arg_str:
|
|
self._del_dim(node_idx, new_idx_count)
|
|
origin_idx_count += 1
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def _assign_view_reshape_indice(self, node: Node, node_idx: int):
|
|
"""
|
|
Assign indice for view and reshape op.
|
|
1. get origin shape and target shape by meta info.
|
|
2. compute the real value of -1 in target shape.
|
|
3. determine changed dim, and assgin indice for generated dim.
|
|
4. log changed dim and generated dim for restore
|
|
5. inherit computation.
|
|
6. TODO: look into view list to see whether the view is associated with other,
|
|
if so assgin equal dim according to previous view.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
# get data, turn into number
|
|
origin_node = node.args[0]
|
|
origin_shape = origin_node.meta["tensor_meta"].shape
|
|
target_shape = []
|
|
unflated_args = flat_list(node.args)
|
|
for i in range(1, len(unflated_args)):
|
|
if isinstance(unflated_args[i], int):
|
|
target_shape.append(unflated_args[i])
|
|
else:
|
|
target_shape.append(unflated_args[i].meta["fwd_out"][0])
|
|
|
|
# compute the value of -1
|
|
if -1 in target_shape:
|
|
origin_product = 1
|
|
for i in origin_shape:
|
|
origin_product *= i
|
|
target_product = -1
|
|
for i in target_shape:
|
|
target_product *= i
|
|
shape_idx = target_shape.index(-1)
|
|
target_shape[shape_idx] = origin_product // target_product
|
|
|
|
# determine changed dim
|
|
len_diff = len(origin_shape) - len(target_shape)
|
|
if len_diff == 1:
|
|
# dim merge
|
|
dim_equal = [i == j for i, j in zip(origin_shape[:-1], target_shape)]
|
|
dim_to = [dim_equal.index(False)]
|
|
dim_from = [dim_equal.index(False), dim_equal.index(False) + 1]
|
|
self._add_dim(node_idx, -1)
|
|
elif len_diff == -1:
|
|
# dim expand
|
|
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
|
|
dim_from = [dim_equal.index(False)]
|
|
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
|
|
self._del_dim(node_idx, -1)
|
|
else:
|
|
raise NotImplementedError("shape" + str(origin_shape) + "and" + str(target_shape) + "view not implemented")
|
|
|
|
# get new indice
|
|
origin_trace = self._find_indice_trace_from_node(origin_node)
|
|
self._assign_indice_as_input(node, node_idx, origin_node)
|
|
dim_from.reverse()
|
|
for i in dim_from:
|
|
self._del_dim(node_idx, i)
|
|
for i in dim_to:
|
|
self._add_dim(node_idx, i)
|
|
|
|
# inherit computation
|
|
compute_log = self._find_compute_trace_from_node(origin_node)
|
|
for i in dim_from:
|
|
if origin_trace[i] in compute_log:
|
|
for j in dim_to:
|
|
self._mark_computation(node, node_idx, [j])
|
|
break
|
|
|
|
# log view, not used now
|
|
view_dict = {
|
|
"idx_from": [origin_trace[i] for i in dim_from],
|
|
"dim_from": dim_from,
|
|
"idx_to": [self.indice_trace_list[node_idx]["indice"][i] for i in dim_to],
|
|
"dim_to": dim_to,
|
|
}
|
|
self.indice_view_list[node] = view_dict
|
|
|
|
def _clear_trace(self, node_idx: int) -> None:
|
|
"""
|
|
clear too far trace to speed up computation
|
|
"""
|
|
trace_range = None
|
|
for i in range(len(self.trace_range)):
|
|
if self.trace_range[i][1] == node_idx:
|
|
trace_range = (self.trace_range[i][0], self.trace_range[i][1])
|
|
break
|
|
if self.trace_range[i][1] > node_idx:
|
|
break
|
|
if trace_range is None:
|
|
return
|
|
|
|
active_nodes = self.active_node_list[trace_range[0]:trace_range[1] + 1]
|
|
active_nodes = set(flat_list(active_nodes))
|
|
active_nodes = [find_idx_by_name(i, self.node_list) for i in active_nodes]
|
|
for i in range(trace_range[0], trace_range[1] + 1):
|
|
trace = self.indice_trace_list[i]
|
|
# clear compute
|
|
for dim_compute in trace["compute"]:
|
|
for i in range(len(dim_compute) - 1, -1, -1):
|
|
if dim_compute[i] < trace_range[0] and dim_compute[i] not in active_nodes:
|
|
dim_compute.pop(i)
|
|
continue
|
|
# clear source
|
|
for dim_source in trace["source"]:
|
|
for k in list(dim_source.keys()):
|
|
if k < trace_range[0] and k not in active_nodes:
|
|
dim_source.pop(k)
|
|
|
|
def trace_indice(self):
|
|
for idx, node in enumerate(self.node_list):
|
|
if node.op == "placeholder":
|
|
self._assign_all_indice(node, idx)
|
|
elif node.op == "call_method":
|
|
if "transpose" in node.name:
|
|
self._assign_transpose_indice(node, idx)
|
|
elif "permute" in node.name:
|
|
self._assign_permute_indice(node, idx)
|
|
elif "view" in node.name or "reshape" in node.name:
|
|
self._assign_view_reshape_indice(node, idx)
|
|
elif "unsqueeze" in node.name:
|
|
self._assign_unsqueeze_indice(node, idx)
|
|
elif any(i in node.name for i in ["to", "contiguous", "clone"]):
|
|
self._assgin_no_change_indice(node, idx)
|
|
elif "new_ones" in node.name:
|
|
self._assign_ones_like_indice(node, idx)
|
|
else:
|
|
raise NotImplementedError(node.name, "method not implemented yet!")
|
|
elif node.op == "call_function":
|
|
if "linear" in node.name:
|
|
self._assign_linear_indice(node, idx)
|
|
elif "cat" in node.name:
|
|
self._assign_cat_indice(node, idx)
|
|
elif "matmul" in node.name:
|
|
self._assign_matmul_indice(node, idx)
|
|
elif "softmax" in node.name:
|
|
self._assign_softmax_indice(node, idx)
|
|
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu", "sub", "truediv"]):
|
|
self._assign_elementwise_indice(node, idx)
|
|
elif "ones_like" in node.name:
|
|
self._assign_ones_like_indice(node, idx)
|
|
elif "dropout" in node.name:
|
|
self._assign_dropout_indice(node, idx)
|
|
elif "einsum" in node.name:
|
|
self._assign_einsum_indice(node, idx)
|
|
elif "sum" in node.name:
|
|
self._assign_sum_indice(node, idx)
|
|
elif "layer_norm" in node.name:
|
|
self._assign_layernorm_indice(node, idx)
|
|
elif "getitem" in node.name:
|
|
self._assign_getitem_indice(node, idx)
|
|
elif any(i in node.name for i in ["getattr", "getitem", "eq", "_assert"]):
|
|
continue
|
|
else:
|
|
raise NotImplementedError(node.name, "function not implemented yet!")
|
|
elif node.op == "call_module":
|
|
if any(n in node.name for n in ["layernorm", "norm"]):
|
|
self._assign_layernorm_indice(node, idx)
|
|
elif any(n in node.name for n in ["sigmoid", "dropout", "relu"]):
|
|
self._assign_elementwise_indice(node, idx)
|
|
else:
|
|
raise NotImplementedError(node.name, "module not implemented yet!")
|
|
elif node.op == "get_attr":
|
|
self._assign_all_indice(node, idx) # get param
|
|
elif node.op == "output":
|
|
continue
|
|
else:
|
|
raise NotImplementedError(node.op, "op not implemented yet!")
|
|
|
|
# limit trace range
|
|
self._clear_trace(idx)
|