mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-23 02:06:35 +00:00
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
138 lines
4.6 KiB
Python
138 lines
4.6 KiB
Python
import math
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
|
|
from colossalai.gemini.memory_tracer import MemStats, OrderedParamGenerator
|
|
from colossalai.tensor import ColoParameter
|
|
from colossalai.utils import is_ddp_ignored
|
|
|
|
|
|
def _filter_exlarge_params(model: nn.Module, size_dict: Dict[int, List[int]]) -> None:
|
|
"""
|
|
Filter those parameters whose size is too large (more than 3x standard deviations) from others.
|
|
"""
|
|
params_size = [p.numel() for p in model.parameters() if not is_ddp_ignored(p)]
|
|
params_size_arr = np.array(params_size)
|
|
|
|
std = np.std(params_size_arr)
|
|
mean = np.mean(params_size_arr)
|
|
upper_limit = mean + 3 * std
|
|
|
|
for key in size_dict:
|
|
org_list = size_dict[key]
|
|
size_dict[key] = list(filter(lambda x: x <= upper_limit, org_list))
|
|
|
|
|
|
def _get_unused_byte(size_list: List[int], chunk_size: int) -> int:
|
|
"""Get unused byte for a certain chunk size.
|
|
"""
|
|
acc = 0
|
|
left = 0
|
|
for s in size_list:
|
|
if s > left:
|
|
acc += left
|
|
left = chunk_size
|
|
left -= s
|
|
return left + acc
|
|
|
|
|
|
def classify_params_by_dp_degree(param_order: OrderedParamGenerator) -> Dict[int, List[ColoParameter]]:
|
|
"""classify_params_by_dp_degree
|
|
|
|
Classify the parameters by their dp degree
|
|
|
|
Args:
|
|
param_order (OrderedParamGenerator): the order of param be visied
|
|
|
|
Returns:
|
|
Dict[int, List[ColoParameter]]: a dict contains the classification results.
|
|
The keys are dp_degrees and the values are parameters.
|
|
"""
|
|
params_dict: Dict[int, List[ColoParameter]] = dict()
|
|
for param in param_order.generate():
|
|
assert isinstance(param, ColoParameter), "please init model in the ColoInitContext"
|
|
if is_ddp_ignored(param):
|
|
continue
|
|
|
|
param_key = param.process_group.dp_world_size()
|
|
|
|
if param_key not in params_dict:
|
|
params_dict[param_key] = []
|
|
params_dict[param_key].append(param)
|
|
|
|
return params_dict
|
|
|
|
|
|
def search_chunk_configuration(
|
|
model: nn.Module,
|
|
search_range_mb: float,
|
|
search_interval_byte: int, # hidden size is the best value for the interval
|
|
min_chunk_size_mb: float = 32,
|
|
filter_exlarge_params: bool = True,
|
|
memstas: Optional[MemStats] = None) -> Tuple[Dict, int]:
|
|
"""search_chunk_configuration
|
|
|
|
Args:
|
|
model (nn.Module): torch module
|
|
search_range_mb (float): searching range in mega byte.
|
|
search_interval_byte (int): searching interval in byte.
|
|
filter_exlarge_params (bool, optional): filter extreme large parameters. Defaults to True.
|
|
|
|
Returns:
|
|
Tuple[Dict, int]: chunk config (a dict of dp_degree -> chunk init args) and its memory chunk waste in byte.
|
|
"""
|
|
|
|
if memstas is not None:
|
|
param_order = memstas.param_order()
|
|
else:
|
|
# build the param visited order right now
|
|
param_order = OrderedParamGenerator()
|
|
for p in model.parameters():
|
|
param_order.append(p)
|
|
|
|
search_range_byte = round(search_range_mb * 1024**2)
|
|
min_chunk_size_byte = round(min_chunk_size_mb * 1024**2)
|
|
assert search_range_byte >= 0
|
|
|
|
params_dict = classify_params_by_dp_degree(param_order)
|
|
config_dict: Dict[int, Dict] = dict()
|
|
|
|
size_dict: Dict[int, List[int]] = dict()
|
|
for dp_degree in params_dict:
|
|
params_list = params_dict[dp_degree]
|
|
size_list = [p.numel() for p in params_list]
|
|
# let small parameters keep gathered in CUDA all the time
|
|
total_size = sum(size_list)
|
|
if total_size < min_chunk_size_byte:
|
|
config_dict[dp_degree] = dict(chunk_size=total_size, keep_gathered=True)
|
|
else:
|
|
size_dict[dp_degree] = size_list
|
|
|
|
if filter_exlarge_params:
|
|
_filter_exlarge_params(model, size_dict)
|
|
|
|
max_size = min_chunk_size_byte
|
|
for key in size_dict:
|
|
max_size = max(max_size, max(size_dict[key]))
|
|
start_size = int(math.ceil(max_size / search_interval_byte) * search_interval_byte)
|
|
|
|
min_chunk_waste = float('+inf')
|
|
best_chunk_size = start_size
|
|
|
|
for chunk_size in range(start_size, start_size + search_range_byte + 1, search_interval_byte):
|
|
temp_waste = 0
|
|
for key in size_dict:
|
|
temp_waste += _get_unused_byte(size_dict[key], chunk_size)
|
|
if temp_waste < min_chunk_waste:
|
|
min_chunk_waste = temp_waste
|
|
best_chunk_size = chunk_size
|
|
|
|
for dp_degree in params_dict:
|
|
if dp_degree in config_dict:
|
|
continue
|
|
config_dict[dp_degree] = dict(chunk_size=best_chunk_size, keep_gathered=False)
|
|
|
|
return config_dict, min_chunk_waste
|