mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-08 11:27:24 +00:00
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
190 lines
6.6 KiB
Python
190 lines
6.6 KiB
Python
"""This code from NVIDIA Megatron
|
|
with some changes. """
|
|
|
|
import enum
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class AttnMaskType(enum.Enum):
|
|
padding = 1
|
|
causal = 2
|
|
|
|
|
|
class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function):
|
|
"""
|
|
Fused operation which performs following three operations in sequence
|
|
|
|
1. Scale the tensor.
|
|
2. Apply upper triangular mask (typically used in gpt models).
|
|
3. Perform softmax.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, inputs, scale):
|
|
from colossalai.kernel import scaled_upper_triang_masked_softmax
|
|
|
|
scale_t = torch.tensor([scale])
|
|
softmax_results = scaled_upper_triang_masked_softmax.forward(inputs, scale_t[0])
|
|
|
|
ctx.save_for_backward(softmax_results, scale_t)
|
|
return softmax_results
|
|
|
|
@staticmethod
|
|
def backward(ctx, output_grads):
|
|
from colossalai.kernel import scaled_upper_triang_masked_softmax
|
|
|
|
softmax_results, scale_t = ctx.saved_tensors
|
|
input_grads = scaled_upper_triang_masked_softmax.backward(output_grads, softmax_results, scale_t[0])
|
|
|
|
return input_grads, None
|
|
|
|
|
|
class ScaledMaskedSoftmax(torch.autograd.Function):
|
|
"""
|
|
Fused operation which performs following three operations in sequence
|
|
|
|
1. Scale the tensor.
|
|
2. Apply the mask.
|
|
3. Perform softmax.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, inputs, mask, scale):
|
|
try:
|
|
from colossalai._C import scaled_masked_softmax
|
|
except ImportError:
|
|
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
|
|
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
|
|
|
|
scale_t = torch.tensor([scale])
|
|
|
|
softmax_results = scaled_masked_softmax.forward(inputs, mask, scale_t[0])
|
|
ctx.save_for_backward(softmax_results, scale_t)
|
|
return softmax_results
|
|
|
|
@staticmethod
|
|
def backward(ctx, output_grads):
|
|
try:
|
|
from colossalai._C import scaled_masked_softmax
|
|
except ImportError:
|
|
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
|
|
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
|
|
|
|
softmax_results, scale_t = ctx.saved_tensors
|
|
|
|
input_grads = scaled_masked_softmax.backward(output_grads, softmax_results, scale_t[0])
|
|
return input_grads, None, None
|
|
|
|
|
|
class FusedScaleMaskSoftmax(nn.Module):
|
|
"""
|
|
Fused operation: scaling + mask + softmax
|
|
|
|
Arguments:
|
|
input_in_fp16: Flag to indicate if input in fp16 data format.
|
|
input_in_bf16: Flag to indicate if input in bf16 data format.
|
|
attn_mask_type: Attention mask type (pad or causal)
|
|
scaled_masked_softmax_fusion: Flag to indicate user want to use softmax fusion
|
|
mask_func: Mask function to be applied.
|
|
softmax_in_fp32: If True, softmax in performed at fp32 precision.
|
|
scale: Scaling factor used in input tensor scaling.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_in_fp16,
|
|
input_in_bf16,
|
|
attn_mask_type,
|
|
scaled_masked_softmax_fusion,
|
|
mask_func,
|
|
softmax_in_fp32,
|
|
scale,
|
|
):
|
|
super(FusedScaleMaskSoftmax, self).__init__()
|
|
self.input_in_fp16 = input_in_fp16
|
|
self.input_in_bf16 = input_in_bf16
|
|
assert not (self.input_in_fp16
|
|
and self.input_in_bf16), "both fp16 and bf16 flags cannot be active at the same time."
|
|
self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16
|
|
self.attn_mask_type = attn_mask_type
|
|
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion
|
|
self.mask_func = mask_func
|
|
self.softmax_in_fp32 = softmax_in_fp32
|
|
self.scale = scale
|
|
|
|
try:
|
|
from colossalai._C import scaled_masked_softmax
|
|
except ImportError:
|
|
from colossalai.kernel.op_builder.scaled_masked_softmax import ScaledMaskedSoftmaxBuilder
|
|
scaled_masked_softmax = ScaledMaskedSoftmaxBuilder().load()
|
|
self.scaled_masked_softmax = scaled_masked_softmax
|
|
|
|
assert (self.scale is None or softmax_in_fp32), "softmax should be in fp32 when scaled"
|
|
|
|
def forward(self, input, mask):
|
|
# [b, np, sq, sk]
|
|
assert input.dim() == 4
|
|
|
|
if self.is_kernel_available(mask, *input.size()):
|
|
return self.forward_fused_softmax(input, mask)
|
|
else:
|
|
return self.forward_torch_softmax(input, mask)
|
|
|
|
def is_kernel_available(self, mask, b, np, sq, sk):
|
|
attn_batches = b * np
|
|
|
|
if (self.scaled_masked_softmax_fusion # user want to fuse
|
|
and self.input_in_float16 # input must be fp16
|
|
and mask is not None # mask tensor must not be None
|
|
and 16 < sk <= 2048 # sk must be 16 ~ 2048
|
|
and sq % 4 == 0 # sq must be divisor of 4
|
|
and attn_batches % 4 == 0 # np * b must be divisor of 4
|
|
):
|
|
if 0 <= sk <= 2048:
|
|
batch_per_block = self.get_batch_per_block(sq, sk, b, np)
|
|
|
|
if self.attn_mask_type == AttnMaskType.causal:
|
|
if attn_batches % batch_per_block == 0:
|
|
return True
|
|
else:
|
|
if sq % batch_per_block == 0:
|
|
return True
|
|
return False
|
|
|
|
def forward_fused_softmax(self, input, mask):
|
|
b, np, sq, sk = input.size()
|
|
scale = self.scale if self.scale is not None else 1.0
|
|
|
|
if self.attn_mask_type == AttnMaskType.causal:
|
|
assert sq == sk, "causal mask is only for self attention"
|
|
|
|
# input is 3D tensor (attn_batches, sq, sk)
|
|
input = input.view(-1, sq, sk)
|
|
probs = ScaledUpperTriangMaskedSoftmax.apply(input, scale)
|
|
return probs.view(b, np, sq, sk)
|
|
else:
|
|
# input is 4D tensor (b, np, sq, sk)
|
|
return ScaledMaskedSoftmax.apply(input, mask, scale)
|
|
|
|
def forward_torch_softmax(self, input, mask):
|
|
if self.input_in_float16 and self.softmax_in_fp32:
|
|
input = input.float()
|
|
|
|
if self.scale is not None:
|
|
input = input * self.scale
|
|
mask_output = self.mask_func(input, mask) if mask is not None else input
|
|
probs = torch.nn.Softmax(dim=-1)(mask_output)
|
|
|
|
if self.input_in_float16 and self.softmax_in_fp32:
|
|
if self.input_in_fp16:
|
|
probs = probs.half()
|
|
else:
|
|
probs = probs.bfloat16()
|
|
|
|
return probs
|
|
|
|
def get_batch_per_block(self, sq, sk, b, np):
|
|
return self.scaled_masked_softmax.get_batch_per_block(sq, sk, b, np)
|