mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-18 16:07:17 +00:00
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
150 lines
6.0 KiB
Python
150 lines
6.0 KiB
Python
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py
|
|
import torch
|
|
from torch.optim.optimizer import Optimizer, required
|
|
|
|
from colossalai.registry import OPTIMIZERS
|
|
from colossalai.utils import multi_tensor_applier
|
|
|
|
|
|
@OPTIMIZERS.register_module
|
|
class FusedSGD(Optimizer):
|
|
r"""Implements stochastic gradient descent (optionally with momentum).
|
|
|
|
`FusedSGD` requires CUDA extensions which can be built during installation or runtime.
|
|
|
|
This version of fused SGD implements 2 fusions.
|
|
|
|
* Fusion of the SGD update's elementwise operations
|
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
|
|
|
|
:class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``
|
|
|
|
:class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp.
|
|
|
|
Nesterov momentum is based on the formula from
|
|
`On the importance of initialization and momentum in deep learning`__.
|
|
|
|
Args:
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
parameter groups
|
|
lr (float): learning rate
|
|
momentum (float, optional): momentum factor (default: 0)
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
dampening (float, optional): dampening for momentum (default: 0)
|
|
nesterov (bool, optional): enables Nesterov momentum (default: False)
|
|
|
|
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
|
|
|
|
.. note::
|
|
The implementation of SGD with Momentum/Nesterov subtly differs from
|
|
Sutskever et. al. and implementations in some other frameworks.
|
|
Considering the specific case of Momentum, the update can be written as
|
|
|
|
.. math::
|
|
v = \rho * v + g \\
|
|
p = p - lr * v
|
|
|
|
where p, g, v and :math:`\rho` denote the parameters, gradient,
|
|
velocity, and momentum respectively.
|
|
This is in contrast to Sutskever et. al. and
|
|
other frameworks which employ an update of the form
|
|
|
|
.. math::
|
|
v = \rho * v + lr * g \\
|
|
p = p - v
|
|
|
|
The Nesterov version is analogously modified.
|
|
"""
|
|
|
|
def __init__(self,
|
|
params,
|
|
lr=required,
|
|
momentum=0,
|
|
dampening=0,
|
|
weight_decay=0,
|
|
nesterov=False,
|
|
wd_after_momentum=False):
|
|
if lr is not required and lr < 0.0:
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
if momentum < 0.0:
|
|
raise ValueError("Invalid momentum value: {}".format(momentum))
|
|
if weight_decay < 0.0:
|
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
|
|
if nesterov and (momentum <= 0 or dampening != 0):
|
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
|
|
super(FusedSGD, self).__init__(params, defaults)
|
|
|
|
self.wd_after_momentum = wd_after_momentum
|
|
|
|
if multi_tensor_applier.available:
|
|
from colossalai.kernel.op_builder import FusedOptimBuilder
|
|
fused_optim = FusedOptimBuilder().load()
|
|
|
|
# Skip buffer
|
|
self._dummy_overflow_buf = torch.tensor([0],
|
|
dtype=torch.int,
|
|
device=self.param_groups[0]["params"][0].device)
|
|
self.multi_tensor_sgd = fused_optim.multi_tensor_sgd
|
|
else:
|
|
raise RuntimeError('FusedSGD requires cuda extensions')
|
|
|
|
def __setstate__(self, state):
|
|
super(FusedSGD, self).__setstate__(state)
|
|
for group in self.param_groups:
|
|
group.setdefault('nesterov', False)
|
|
|
|
def get_momentums(self, params):
|
|
momentums = []
|
|
first_run = True
|
|
for p in params:
|
|
param_state = self.state[p]
|
|
# torch.optim.SGD initializes momentum in the main loop, we have
|
|
# to do it here, and track whether or not we've done so, so that
|
|
# momentum application can be skipped in the main kernel.
|
|
if 'momentum_buffer' not in param_state:
|
|
first_run = True
|
|
buf = param_state['momentum_buffer'] = torch.zeros_like(p)
|
|
momentums.append(buf)
|
|
else:
|
|
first_run = False
|
|
momentums.append(param_state['momentum_buffer'])
|
|
return momentums, first_run
|
|
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
weight_decay = group['weight_decay']
|
|
momentum = group['momentum']
|
|
dampening = group['dampening']
|
|
nesterov = group['nesterov']
|
|
|
|
# For each group, there are 3 possible combinations we need to consider:
|
|
# grad_type, param_to_update_type, momentum_type
|
|
# 1. fp16, fp16, fp16
|
|
# 2. fp32, fp32, fp32
|
|
# 3. fp16, fp32, fp32
|
|
g_l, p_l = [], []
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
if p.grad.data.is_sparse:
|
|
raise RuntimeError('FusedSGD does not support sparse gradients')
|
|
g_l.append(p.grad)
|
|
p_l.append(p)
|
|
m_l, first_run = self.get_momentums(p_l)
|
|
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, [g_l, p_l, m_l], weight_decay,
|
|
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum, 1.0)
|
|
|
|
return loss
|