ColossalAI/colossalai/nn/optimizer/hybrid_adam.py
Boyuan Yao 7a58dc5ad2
Update metainfo patch branch (#2517)
* init

* rename and remove useless func

* basic chunk

* add evoformer

* align evoformer

* add meta

* basic chunk

* basic memory

* finish basic inference memory estimation

* finish memory estimation

* fix bug

* finish memory estimation

* add part of index tracer

* finish basic index tracer

* add doc string

* add doc str

* polish code

* polish code

* update active log

* polish code

* add possible region search

* finish region search loop

* finish chunk define

* support new op

* rename index tracer

* finishi codegen on msa

* redesign index tracer, add source and change compute

* pass outproduct mean

* code format

* code format

* work with outerproductmean and msa

* code style

* code style

* code style

* code style

* change threshold

* support check_index_duplicate

* support index dupilictae and update loop

* support output

* update memory estimate

* optimise search

* fix layernorm

* move flow tracer

* refactor flow tracer

* format code

* refactor flow search

* code style

* adapt codegen to prepose node

* code style

* remove abandoned function

* remove flow tracer

* code style

* code style

* reorder nodes

* finish node reorder

* update run

* code style

* add chunk select class

* add chunk select

* code style

* add chunksize in emit, fix bug in reassgin shape

* code style

* turn off print mem

* add evoformer openfold init

* init openfold

* add benchmark

* add print

* code style

* code style

* init openfold

* update openfold

* align openfold

* use max_mem to control stratge

* update source add

* add reorder in mem estimator

* improve reorder efficeincy

* support ones_like, add prompt if fit mode search fail

* fix a bug in ones like, dont gen chunk if dim size is 1

* fix bug again

* update min memory stratege, reduce mem usage by 30%

* last version of benchmark

* refactor structure

* restruct dir

* update test

* rename

* take apart chunk code gen

* close mem and code print

* code format

* rename ambiguous variable

* seperate flow tracer

* seperate input node dim search

* seperate prepose_nodes

* seperate non chunk input

* seperate reorder

* rename

* ad reorder graph

* seperate trace flow

* code style

* code style

* fix typo

* set benchmark

* rename test

* update codegen test

* Fix state_dict key missing issue of the ZeroDDP (#2363)

* Fix state_dict output for ZeroDDP duplicated parameters

* Rewrite state_dict based on get_static_torch_model

* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)

* update codegen test

* update codegen test

* add chunk search test

* code style

* add available

* [hotfix] fix gpt gemini example (#2404)

* [hotfix] fix gpt gemini example

* [example] add new assertions

* remove autochunk_available

* [workflow] added nightly release to pypi (#2403)

* add comments

* code style

* add doc for search chunk

* [doc] updated readme regarding pypi installation (#2406)

* add doc for search

* [doc] updated kernel-related optimisers' docstring (#2385)

* [doc] updated kernel-related optimisers' docstring

* polish doc

* rename trace_index to trace_indice

* rename function from index to indice

* rename

* rename in doc

* [polish] polish code for get_static_torch_model (#2405)

* [gemini] polish code

* [testing] remove code

* [gemini] make more robust

* rename

* rename

* remove useless function

* [worfklow] added coverage test (#2399)

* [worfklow] added coverage test

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* add doc for trace indice

* [docker] updated Dockerfile and release workflow (#2410)

* add doc

* update doc

* add available

* change imports

* add test in import

* [workflow] refactored the example check workflow (#2411)

* [workflow] refactored the example check workflow

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* Update parallel_context.py (#2408)

* [hotfix] add DISTPAN argument for benchmark (#2412)

* change the benchmark config file

* change config

* revert config file

* rename distpan to distplan

* [workflow] added precommit check for code consistency (#2401)

* [workflow] added precommit check for code consistency

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* adapt new fx

* [workflow] added translation for non-english comments (#2414)

* [setup] refactored setup.py for dependency graph (#2413)

* change import

* update doc

* [workflow] auto comment if precommit check fails (#2417)

* [hotfix] add norm clearing for the overflow step (#2416)

* [examples] adding tflops to PaLM (#2365)

* [workflow]auto comment with test coverage report (#2419)

* [workflow]auto comment with test coverage report

* polish code

* polish yaml

* [doc] added documentation for CI/CD (#2420)

* [doc] added documentation for CI/CD

* polish markdown

* polish markdown

* polish markdown

* [example] removed duplicated stable diffusion example (#2424)

* [zero] add inference mode and its unit test (#2418)

* [workflow] report test coverage even if below threshold (#2431)

* [example] improved the clarity yof the example readme (#2427)

* [example] improved the clarity yof the example readme

* polish workflow

* polish workflow

* polish workflow

* polish workflow

* polish workflow

* polish workflow

* [ddp] add is_ddp_ignored (#2434)

[ddp] rename to is_ddp_ignored

* [workflow] make test coverage report collapsable (#2436)

* [autoparallel] add shard option (#2423)

* [fx] allow native ckpt trace and codegen. (#2438)

* [cli] provided more details if colossalai run fail (#2442)

* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)

* [autoparallel] integrate device mesh initialization into autoparallelize

* add megatron solution

* update gpt autoparallel examples with latest api

* adapt beta value to fit the current computation cost

* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)

* [ddp] add is_ddp_ignored

[ddp] rename to is_ddp_ignored

* [zero] fix state_dict and load_state_dict

* fix bugs

* [zero] update unit test for ZeroDDP

* [example] updated the hybrid parallel tutorial (#2444)

* [example] updated the hybrid parallel tutorial

* polish code

* [zero] add warning for ignored parameters (#2446)

* [example] updated large-batch optimizer tutorial (#2448)

* [example] updated large-batch optimizer tutorial

* polish code

* polish code

* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)

* [workflow] fixed the on-merge condition check (#2452)

* [workflow] automated the compatiblity test (#2453)

* [workflow] automated the compatiblity test

* polish code

* [autoparallel] update binary elementwise handler (#2451)

* [autoparallel] update binary elementwise handler

* polish

* [workflow] automated bdist wheel build (#2459)

* [workflow] automated bdist wheel build

* polish workflow

* polish readme

* polish readme

* Fix False warning in initialize.py (#2456)

* Update initialize.py

* pre-commit run check

* [examples] update autoparallel tutorial demo (#2449)

* [examples] update autoparallel tutorial demo

* add test_ci.sh

* polish

* add conda yaml

* [cli] fixed hostname mismatch error (#2465)

* [example] integrate autoparallel demo with CI (#2466)

* [example] integrate autoparallel demo with CI

* polish code

* polish code

* polish code

* polish code

* [zero] low level optim supports ProcessGroup (#2464)

* [example] update vit ci script (#2469)

* [example] update vit ci script

* [example] update requirements

* [example] update requirements

* [example] integrate seq-parallel tutorial with CI (#2463)

* [zero] polish low level optimizer (#2473)

* polish pp middleware (#2476)

Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>

* [example] update gpt gemini example ci test (#2477)

* [zero] add unit test for low-level zero init (#2474)

* [workflow] fixed the skip condition of  example weekly check workflow (#2481)

* [example] stable diffusion add roadmap

* add dummy test_ci.sh

* [example] stable diffusion add roadmap (#2482)

* [CI] add test_ci.sh for palm, opt and gpt (#2475)

* polish code

* [example] titans for gpt

* polish readme

* remove license

* polish code

* update readme

* [example] titans for gpt (#2484)

* [autoparallel] support origin activation ckpt on autoprallel system (#2468)

* [autochunk] support evoformer tracer (#2485)

support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code

* [example] fix requirements (#2488)

* [zero] add unit testings for hybrid parallelism  (#2486)

* [hotfix] gpt example titans bug #2493

* polish code and fix dataloader bugs

* [hotfix] gpt example titans bug #2493 (#2494)

* [fx] allow control of ckpt_codegen init (#2498)

* [fx] allow control of ckpt_codegen init

Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so. 
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.

* code style

* [example] dreambooth example

* add test_ci.sh to dreambooth

* [autochunk] support autochunk on evoformer (#2497)

* Revert "Update parallel_context.py (#2408)"

This reverts commit 7d5640b9db.

* add avg partition (#2483)

Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>

* [auto-chunk] support extramsa (#3) (#2504)

* [utils] lazy init. (#2148)

* [utils] lazy init.

* [utils] remove description.

* [utils] complete.

* [utils] finalize.

* [utils] fix names.

* [autochunk] support parsing blocks (#2506)

* [zero] add strict ddp mode (#2508)

* [zero] add strict ddp mode

* [polish] add comments for strict ddp mode

* [zero] fix test error

* [doc] update opt and tutorial links (#2509)

* [workflow] fixed changed file detection (#2515)

Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
2023-01-27 09:52:21 +08:00

150 lines
6.7 KiB
Python

from typing import Any, Optional
import torch
from colossalai.kernel.op_builder import CPUAdamBuilder, FusedOptimBuilder
from colossalai.registry import OPTIMIZERS
from colossalai.utils import multi_tensor_applier
from .nvme_optimizer import NVMeOptimizer
@OPTIMIZERS.register_module
class HybridAdam(NVMeOptimizer):
"""Implements Adam algorithm.
Supports parameters updating on both GPU and CPU, depanding on the device of paramters.
But the parameters and gradients should on the same device:
* Parameters on CPU and gradients on CPU is allowed.
* Parameters on GPU and gradients on GPU is allowed.
* Parameters on GPU and gradients on CPU is **not** allowed.
`HybriadAdam` requires CUDA extensions which can be built during installation or runtime.
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
model_params (iterable): iterable of parameters of dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED yet in CPUAdam!
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
nvme_offload_fraction (float, optional): Fraction of optimizer states to be offloaded to NVMe. Defaults to 0.0.
nvme_offload_dir (Optional[str], optional): Directory to save NVMe offload files.
If it's ``None``, a random temporary directory will be used. Defaults to None.
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
# Number of fp32 shards for per parameter
# Param weight, grad, momentum and variance
num_fp32_shards_per_param = 4
def __init__(self,
model_params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
adamw_mode=True,
nvme_offload_fraction: float = 0.0,
nvme_offload_dir: Optional[str] = None,
**defaults: Any):
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
super(HybridAdam, self).__init__(model_params, default_args, nvme_offload_fraction, nvme_offload_dir)
self.adamw_mode = adamw_mode
# build during runtime if not found
cpu_optim = CPUAdamBuilder().load()
fused_optim = FusedOptimBuilder().load()
self.cpu_adam_op = cpu_optim.CPUAdamOptimizer(lr, betas[0], betas[1], eps, weight_decay, adamw_mode)
self.gpu_adam_op = fused_optim.multi_tensor_adam
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
@torch.no_grad()
def step(self, closure=None, div_scale: float = -1):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
self._pre_step('exp_avg', 'exp_avg_sq')
for _, group in enumerate(self.param_groups):
g_l, p_l, m_l, v_l = [], [], [], []
group_step = 0
for _, p in enumerate(group['params']):
if p.grad is None:
continue
state = self.state[p]
target_device = p.device
if len(state) == 0:
state['step'] = 0
# gradient momentums
state['exp_avg'] = torch.zeros_like(p, dtype=torch.float, device=target_device)
# gradient variances
state['exp_avg_sq'] = torch.zeros_like(p, dtype=torch.float, device=target_device)
self._post_state_init(p)
state['step'] += 1
group_step = state['step']
beta1, beta2 = group['betas']
if target_device.type == 'cpu':
assert state['exp_avg'].device.type == 'cpu', "exp_avg should stay on cpu"
assert state['exp_avg_sq'].device.type == 'cpu', "exp_avg should stay on cpu"
self._pre_update(p, 'exp_avg', 'exp_avg_sq')
self.cpu_adam_op.step(state['step'], group['lr'], beta1, beta2, group['eps'], group['weight_decay'],
group['bias_correction'], p.data, p.grad.data, state['exp_avg'],
state['exp_avg_sq'], div_scale)
self._post_update(p, 'exp_avg', 'exp_avg_sq')
elif target_device.type == 'cuda':
assert state['exp_avg'].device.type == 'cuda', "exp_avg should stay on cuda"
assert state['exp_avg_sq'].device.type == 'cuda', "exp_avg should stay on cuda"
# record the state by gruop and update at once
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
else:
raise RuntimeError
if len(g_l) > 0:
adamw_mode = 1 if self.adamw_mode else 0
bias_correction = 1 if group['bias_correction'] else 0
multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'],
group['betas'][0], group['betas'][1], group['eps'], group_step, adamw_mode,
bias_correction, group['weight_decay'], div_scale)
self._post_step()
return loss