ColossalAI/colossalai/utils/model/experimental.py
Boyuan Yao 7a58dc5ad2
Update metainfo patch branch (#2517)
* init

* rename and remove useless func

* basic chunk

* add evoformer

* align evoformer

* add meta

* basic chunk

* basic memory

* finish basic inference memory estimation

* finish memory estimation

* fix bug

* finish memory estimation

* add part of index tracer

* finish basic index tracer

* add doc string

* add doc str

* polish code

* polish code

* update active log

* polish code

* add possible region search

* finish region search loop

* finish chunk define

* support new op

* rename index tracer

* finishi codegen on msa

* redesign index tracer, add source and change compute

* pass outproduct mean

* code format

* code format

* work with outerproductmean and msa

* code style

* code style

* code style

* code style

* change threshold

* support check_index_duplicate

* support index dupilictae and update loop

* support output

* update memory estimate

* optimise search

* fix layernorm

* move flow tracer

* refactor flow tracer

* format code

* refactor flow search

* code style

* adapt codegen to prepose node

* code style

* remove abandoned function

* remove flow tracer

* code style

* code style

* reorder nodes

* finish node reorder

* update run

* code style

* add chunk select class

* add chunk select

* code style

* add chunksize in emit, fix bug in reassgin shape

* code style

* turn off print mem

* add evoformer openfold init

* init openfold

* add benchmark

* add print

* code style

* code style

* init openfold

* update openfold

* align openfold

* use max_mem to control stratge

* update source add

* add reorder in mem estimator

* improve reorder efficeincy

* support ones_like, add prompt if fit mode search fail

* fix a bug in ones like, dont gen chunk if dim size is 1

* fix bug again

* update min memory stratege, reduce mem usage by 30%

* last version of benchmark

* refactor structure

* restruct dir

* update test

* rename

* take apart chunk code gen

* close mem and code print

* code format

* rename ambiguous variable

* seperate flow tracer

* seperate input node dim search

* seperate prepose_nodes

* seperate non chunk input

* seperate reorder

* rename

* ad reorder graph

* seperate trace flow

* code style

* code style

* fix typo

* set benchmark

* rename test

* update codegen test

* Fix state_dict key missing issue of the ZeroDDP (#2363)

* Fix state_dict output for ZeroDDP duplicated parameters

* Rewrite state_dict based on get_static_torch_model

* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)

* update codegen test

* update codegen test

* add chunk search test

* code style

* add available

* [hotfix] fix gpt gemini example (#2404)

* [hotfix] fix gpt gemini example

* [example] add new assertions

* remove autochunk_available

* [workflow] added nightly release to pypi (#2403)

* add comments

* code style

* add doc for search chunk

* [doc] updated readme regarding pypi installation (#2406)

* add doc for search

* [doc] updated kernel-related optimisers' docstring (#2385)

* [doc] updated kernel-related optimisers' docstring

* polish doc

* rename trace_index to trace_indice

* rename function from index to indice

* rename

* rename in doc

* [polish] polish code for get_static_torch_model (#2405)

* [gemini] polish code

* [testing] remove code

* [gemini] make more robust

* rename

* rename

* remove useless function

* [worfklow] added coverage test (#2399)

* [worfklow] added coverage test

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* add doc for trace indice

* [docker] updated Dockerfile and release workflow (#2410)

* add doc

* update doc

* add available

* change imports

* add test in import

* [workflow] refactored the example check workflow (#2411)

* [workflow] refactored the example check workflow

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* Update parallel_context.py (#2408)

* [hotfix] add DISTPAN argument for benchmark (#2412)

* change the benchmark config file

* change config

* revert config file

* rename distpan to distplan

* [workflow] added precommit check for code consistency (#2401)

* [workflow] added precommit check for code consistency

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* polish code

* adapt new fx

* [workflow] added translation for non-english comments (#2414)

* [setup] refactored setup.py for dependency graph (#2413)

* change import

* update doc

* [workflow] auto comment if precommit check fails (#2417)

* [hotfix] add norm clearing for the overflow step (#2416)

* [examples] adding tflops to PaLM (#2365)

* [workflow]auto comment with test coverage report (#2419)

* [workflow]auto comment with test coverage report

* polish code

* polish yaml

* [doc] added documentation for CI/CD (#2420)

* [doc] added documentation for CI/CD

* polish markdown

* polish markdown

* polish markdown

* [example] removed duplicated stable diffusion example (#2424)

* [zero] add inference mode and its unit test (#2418)

* [workflow] report test coverage even if below threshold (#2431)

* [example] improved the clarity yof the example readme (#2427)

* [example] improved the clarity yof the example readme

* polish workflow

* polish workflow

* polish workflow

* polish workflow

* polish workflow

* polish workflow

* [ddp] add is_ddp_ignored (#2434)

[ddp] rename to is_ddp_ignored

* [workflow] make test coverage report collapsable (#2436)

* [autoparallel] add shard option (#2423)

* [fx] allow native ckpt trace and codegen. (#2438)

* [cli] provided more details if colossalai run fail (#2442)

* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)

* [autoparallel] integrate device mesh initialization into autoparallelize

* add megatron solution

* update gpt autoparallel examples with latest api

* adapt beta value to fit the current computation cost

* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)

* [ddp] add is_ddp_ignored

[ddp] rename to is_ddp_ignored

* [zero] fix state_dict and load_state_dict

* fix bugs

* [zero] update unit test for ZeroDDP

* [example] updated the hybrid parallel tutorial (#2444)

* [example] updated the hybrid parallel tutorial

* polish code

* [zero] add warning for ignored parameters (#2446)

* [example] updated large-batch optimizer tutorial (#2448)

* [example] updated large-batch optimizer tutorial

* polish code

* polish code

* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)

* [workflow] fixed the on-merge condition check (#2452)

* [workflow] automated the compatiblity test (#2453)

* [workflow] automated the compatiblity test

* polish code

* [autoparallel] update binary elementwise handler (#2451)

* [autoparallel] update binary elementwise handler

* polish

* [workflow] automated bdist wheel build (#2459)

* [workflow] automated bdist wheel build

* polish workflow

* polish readme

* polish readme

* Fix False warning in initialize.py (#2456)

* Update initialize.py

* pre-commit run check

* [examples] update autoparallel tutorial demo (#2449)

* [examples] update autoparallel tutorial demo

* add test_ci.sh

* polish

* add conda yaml

* [cli] fixed hostname mismatch error (#2465)

* [example] integrate autoparallel demo with CI (#2466)

* [example] integrate autoparallel demo with CI

* polish code

* polish code

* polish code

* polish code

* [zero] low level optim supports ProcessGroup (#2464)

* [example] update vit ci script (#2469)

* [example] update vit ci script

* [example] update requirements

* [example] update requirements

* [example] integrate seq-parallel tutorial with CI (#2463)

* [zero] polish low level optimizer (#2473)

* polish pp middleware (#2476)

Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>

* [example] update gpt gemini example ci test (#2477)

* [zero] add unit test for low-level zero init (#2474)

* [workflow] fixed the skip condition of  example weekly check workflow (#2481)

* [example] stable diffusion add roadmap

* add dummy test_ci.sh

* [example] stable diffusion add roadmap (#2482)

* [CI] add test_ci.sh for palm, opt and gpt (#2475)

* polish code

* [example] titans for gpt

* polish readme

* remove license

* polish code

* update readme

* [example] titans for gpt (#2484)

* [autoparallel] support origin activation ckpt on autoprallel system (#2468)

* [autochunk] support evoformer tracer (#2485)

support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code

* [example] fix requirements (#2488)

* [zero] add unit testings for hybrid parallelism  (#2486)

* [hotfix] gpt example titans bug #2493

* polish code and fix dataloader bugs

* [hotfix] gpt example titans bug #2493 (#2494)

* [fx] allow control of ckpt_codegen init (#2498)

* [fx] allow control of ckpt_codegen init

Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so. 
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.

* code style

* [example] dreambooth example

* add test_ci.sh to dreambooth

* [autochunk] support autochunk on evoformer (#2497)

* Revert "Update parallel_context.py (#2408)"

This reverts commit 7d5640b9db.

* add avg partition (#2483)

Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>

* [auto-chunk] support extramsa (#3) (#2504)

* [utils] lazy init. (#2148)

* [utils] lazy init.

* [utils] remove description.

* [utils] complete.

* [utils] finalize.

* [utils] fix names.

* [autochunk] support parsing blocks (#2506)

* [zero] add strict ddp mode (#2508)

* [zero] add strict ddp mode

* [polish] add comments for strict ddp mode

* [zero] fix test error

* [doc] update opt and tutorial links (#2509)

* [workflow] fixed changed file detection (#2515)

Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
2023-01-27 09:52:21 +08:00

441 lines
16 KiB
Python

import contextlib
import copy
import gc
import pprint
from typing import Callable, List, Optional, Union
import torch
import torch.nn as nn
from torch.utils._pytree import tree_map
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx.profiler import MetaTensor
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
# reference: https://pytorch.org/cppdocs/notes/tensor_creation.html
_TorchFactoryMethod = [
"arange",
"empty",
"eye",
"full",
"linspace",
"logspace",
"ones",
"rand",
"randn",
"randint",
"randperm",
"zeros",
"tensor",
]
orig_empty = torch.empty # avoid override
scm = ShapeConsistencyManager()
class LazyTensor(torch.Tensor):
"""A naive implementation of LazyTensor (https://arxiv.org/pdf/2102.13267.pdf).
Usage:
1. Use ``LazyTensor`` instead of ``torch.Tensor``.
>>> x = LazyTensor(torch.zeros, 2, 3)
>>> x += 1
>>> y = x * x
>>> y = y.cuda().half()
>>> y[0, 0] = 0
>>> y = y.materialize() # materialize the tensor
>>> print(y)
tensor([[0., 1., 1.],
[1., 1., 1.]], device='cuda:0', dtype=torch.float16)
2. Generate ``MetaTensor`` from ``LazyTensor``
>>> x = LazyTensor(torch.zeros, 2, 3)
>>> x.reshape(3, 2)
>>> x = x.traceable() # generate ``MetaTensor``
>>> print(x)
MetaTensor(..., size=(3, 2), device=cpu, dtype=torch.float32)
3. Use ``LazyTensor`` to generate sharded ``nn.Parameter``.
>>> x = LazyTensor(torch.zeros, 2, 3)
>>> x.spec = ... # some ``ShardingSpec``
>>> x.distribute() # distribute the tensor according to the ``ShardingSpec``
Warnings:
1. Cases that ``LazyTensor`` can't deal with.
>>> x = LazyTensor(torch.ones, 2, 3)
>>> x[0, 0] = -x[0, 0] # this will cause infinite recursion
2. ``LazyTensor.materialize()`` can't be called multiple times.
>>> x = LazyTensor(torch.ones, 2, 3)
>>> x.materialize()
>>> x.materialize() # this is disallowed
"""
_repr = True
_meta_data: Optional[MetaTensor] = None # shape, dtype, device
_cached_data: Optional[torch.Tensor] = None # materialized data
@staticmethod
def __new__(cls, func, *args, dtype=None, device=None, **kwargs):
elem = func(*args, dtype=dtype, device='meta', **kwargs)
r = torch.Tensor._make_wrapper_subclass(cls,
elem.size(),
strides=elem.stride(),
storage_offset=elem.storage_offset(),
dtype=elem.dtype,
layout=elem.layout,
device=device if device is not None else torch.device('cpu'),
requires_grad=elem.requires_grad)
r._meta_data = MetaTensor(elem, fake_device=device)
return r
def __init__(self, func, *args, dtype=None, device=None, **kwargs):
self._factory_method = (func, args, {'dtype': dtype, 'device': device, **kwargs}) # (func, args, kwargs)
self._cached_buffer = list() # (func, args, kwargs)
self._spec = None
self._data = self
def __repr__(self):
if self._repr:
# avoid recursive representation
self.__class__._repr = False
s = f'LazyTensor(..., size={tuple(self._meta_data.shape)}, device={self._meta_data.device}, dtype={self._meta_data.dtype})\n'\
f'factory method: {self._factory_method}\n'\
f'cached: {pprint.pformat(self._cached_buffer) if self._cached_data is None else self._cached_data}\n'\
f'spec: {self._spec}'
self.__class__._repr = True
return s
else:
return 'LazyTensor(...)'
def materialize(self) -> torch.Tensor:
"""Materialize the ``LazyTensor`` to ``torch.Tensor``.
Warnings:
Calling ``self.materialize()`` will clear all cached sequence and factory method,
because we don't allow materialize the same ``LazyTensor`` twice.
This is mentioned in the paper: https://arxiv.org/pdf/2102.13267.pdf (Part 4.3).
Returns:
torch.Tensor: The materialized tensor.
"""
target = self._data._realize_cached_data()
if isinstance(self, nn.Parameter):
target = nn.Parameter(target, requires_grad=self.requires_grad)
self._clear_all()
return target
def traceable(self) -> MetaTensor:
"""Generate ``MetaTensor`` from ``LazyTensor``. (Mostly for tracing)
Returns:
MetaTensor: The generated ``MetaTensor``.
"""
if isinstance(self, nn.Parameter):
return nn.Parameter(self._meta_data, requires_grad=self.requires_grad)
else:
return self._meta_data
def distribute(self) -> torch.Tensor:
"""Distribute the ``LazyTensor`` according to the ``ShardingSpec``.
Returns:
torch.Tensor: The sharded tensor.
"""
if self._spec is None:
raise RuntimeError('ShardingSpec is not set for\n{self}')
spec, device_mesh = self._spec, self._spec.device_mesh
target = self.materialize()
# TODO(some man): better not be coupled with auto-parallel
target.data = scm.apply_for_autoparallel_runtime(target.data, ShardingSpec(device_mesh, target.shape, {}),
spec).detach().clone()
return target
def _realize_cached_data(self) -> torch.Tensor:
# self._cached_data should be generated after the first call of this function
if self._cached_data is None:
if self._factory_method is not None:
# apply factory method
func, args, kwargs = self._factory_method
# apply cached sequence
self._cached_data = self._apply_cache_buffer(func(*args, **kwargs))
else:
# apply cached sequence only
self._cached_data = self._apply_cache_buffer()
return self._cached_data
def _apply_cache_buffer(self, target=None) -> torch.Tensor:
# dump all cached sequence
# super-dainiu: support methods for single Tensor only
def replace(x):
if x is self:
return target
elif isinstance(x, LazyTensor):
return x._realize_cached_data()
return x
packed = None
for (func, args, kwargs) in self._cached_buffer:
if func == torch.Tensor.requires_grad_:
packed = func, args, kwargs # requires grad should be set at last
else:
o = func(*tree_map(replace, args), **tree_map(replace, kwargs))
target = o if isinstance(o, torch.Tensor) else target # if func returns non-Tensor, discard the value
# super-dainiu: set requires_grad after all inplace-ops are done
if packed is not None:
func, args, kwargs = packed
func(*tree_map(replace, args), **tree_map(replace, kwargs))
return target
# clear all means:
# 1. clear factory method
# 2. clear cached sequence
# 3. clear cached data
def _clear_all(self):
self._cached_data = None
self._cached_buffer = None
self._data = None
gc.collect() # avoid memory leak
# cache everything with __torch_function__
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
target = None
if isinstance(func, torch._C.ScriptMethod):
def unwrap(x):
if isinstance(x, LazyTensor):
return x._meta_data
return x
target: LazyTensor = args[0].clone()
target._cached_buffer.append((func, args, kwargs))
target._meta_data = getattr(target._meta_data, func.name)(*tree_map(unwrap, args[1:]),
**tree_map(unwrap, kwargs))
else:
def unwrap(x):
nonlocal target
if isinstance(x, LazyTensor):
target = x if (func.__name__.endswith('_') and not (func.__name__.endswith('__'))
or func.__name__ == "__setitem__") else x.clone()
target._cached_buffer.append((func, args, kwargs))
return x._meta_data
return x
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
o = func(*args, **kwargs)
if isinstance(o, MetaTensor):
target._meta_data = o
return target
else:
return o
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
pass # skip
def clone(self) -> "LazyTensor":
"""Create a new ``LazyTensor`` with same cached sequence and factory method.
Returns:
LazyTensor: the new ``LazyTensor``
"""
target = LazyTensor(orig_empty, 0, dtype=self._meta_data.dtype, device=self._meta_data.device)
target._factory_method = None
target._cached_buffer = list()
target._meta_data = self._meta_data.clone()
target._cached_data = self._cached_data.clone() if self._cached_data is not None else None
target._spec = copy.deepcopy(self._spec)
return target
def detach(self) -> "LazyTensor":
target = self.clone()
target._cached_buffer.append((torch.Tensor.detach_, (self,), {}))
return target
@property
def spec(self) -> ShardingSpec:
return self._spec
@spec.setter
def spec(self, other: ShardingSpec):
self._spec = other
@property
def data(self) -> "LazyTensor":
return self._data.detach()
@data.setter
def data(self, other: "LazyTensor") -> "LazyTensor":
"""This avoid the following infinite recursion, which is very common in ``nn.Module`` initialization.
Usage:
>>> a = LazyTensor(torch.empty, 0, dtype=torch.float32, device='cpu')
>>> b = a.cuda()
>>> a.data = b
"""
self._data = other
class LazyInitContext():
"""Context manager for lazy initialization. Enables initializing the model without allocating real memory.
Usage:
1. The model is initialized, but no real memory is allocated.
>>> ctx = LazyInitContext()
>>> with ctx:
>>> model = MyModel().cuda()
2. The model is initialized with ``MetaTensor`` as weights, but still no real memory is allocated.
>>> with ctx.traceable(model):
>>> gm = symbolic_trace(model, meta_args=meta_args)
>>> # Solve the execution strategy and apply the strategy to the model
>>> strategy = StrategyAndSpec()
3. The model is initialized with ``torch.Tensor`` as weights, and real memory is allocated. (single device)
>>> model = ctx.materialize(model)
3. The model is initialized with sharded ``torch.Tensor`` as weights, and real memory is allocated. (distributed scenario)
>>> model = apply_strategy_to_all_params(model, strategy)
>>> model = ctx.distribute(model)
Warnings:
This API is still experimental and further modifications can be made to it.
For example:
1. Quantization strategies can be applied before allocating real memory.
2. Lazy initialization seems slower than normal initialization.
"""
def __init__(self):
self.overrides = {}
def __enter__(self):
def wrap_factory_method(target):
# factory functions (eg. torch.empty())
def wrapper(*args, **kwargs):
return LazyTensor(target, *args, **kwargs)
return wrapper, target
def wrap_factory_like_method(orig_target, target):
# factory_like functions (eg. torch.empty_like())
def wrapper(*args, **kwargs):
orig_t = args[0]
return LazyTensor(orig_target, *args[1:], device=orig_t.device, dtype=orig_t.dtype, **kwargs)
return wrapper, target
self.overrides = {
target: wrap_factory_method(getattr(torch, target))
for target in _TorchFactoryMethod
if callable(getattr(torch, target, None))
}
self.overrides.update({
target + '_like': wrap_factory_like_method(getattr(torch, target), getattr(torch, target + '_like'))
for target in _TorchFactoryMethod
if callable(getattr(torch, target + '_like', None))
})
for name, (wrapper, orig) in self.overrides.items():
setattr(torch, name, wrapper)
def __exit__(self, exc_type, exc_val, exc_tb):
for name, (wrapper, orig) in self.overrides.items():
setattr(torch, name, orig)
@staticmethod
def materialize(module: torch.nn.Module):
"""Initialize all ``nn.Parameter`` from ``LazyTensor``.
Args:
module (torch.nn.Module): Target ``nn.Module``
"""
@torch.no_grad()
def init_recursively(module: nn.Module):
# recursively initialize the module
for mod in module.children():
init_recursively(mod)
# initialize tensors directly attached to the current module
for name, param in module.named_parameters(recurse=False):
setattr(module, name, param.materialize())
for name, buf in module.named_buffers(recurse=False):
setattr(module, name, buf.materialize())
init_recursively(module)
return module
@staticmethod
def distribute(module: torch.nn.Module):
"""Initialize and shard all ``nn.Parameter`` from ``LazyTensor``.
Args:
module (torch.nn.Module): Sharded target ``nn.Module``
"""
@torch.no_grad()
def init_recursively(module: nn.Module):
# recursively initialize the module
for mod in module.children():
init_recursively(mod)
# initialize tensors directly attached to the current module
for name, param in module.named_parameters(recurse=False):
setattr(module, name, param.distribute())
for name, buf in module.named_buffers(recurse=False):
setattr(module, name, buf.distribute())
init_recursively(module)
return module
@staticmethod
@contextlib.contextmanager
def traceable(module: torch.nn.Module):
"""Initialize all ``nn.Parameters`` as ``MetaTensor``. This enables ``ColoTracer`` with control flow.
Args:
module (torch.nn.Module): Traceable ``nn.Module`` with ``MetaTensor`` as parameters.
"""
orig_val = dict()
def init_recursively(module: nn.Module):
# recursively initialize the module
for mod in module.children():
init_recursively(mod)
# initialize tensors directly attached to the current module
for name, param in module.named_parameters(recurse=False):
setattr(module, name, param.traceable())
orig_val[(module, name)] = param
for name, buf in module.named_buffers(recurse=False):
setattr(module, name, buf.traceable())
orig_val[(module, name)] = buf
init_recursively(module)
yield
# restore original values
for (module, name), val in orig_val.items():
setattr(module, name, val)