mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-07 11:03:58 +00:00
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
441 lines
16 KiB
Python
441 lines
16 KiB
Python
import contextlib
|
|
import copy
|
|
import gc
|
|
import pprint
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils._pytree import tree_map
|
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
from colossalai.fx.profiler import MetaTensor
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
|
|
# reference: https://pytorch.org/cppdocs/notes/tensor_creation.html
|
|
_TorchFactoryMethod = [
|
|
"arange",
|
|
"empty",
|
|
"eye",
|
|
"full",
|
|
"linspace",
|
|
"logspace",
|
|
"ones",
|
|
"rand",
|
|
"randn",
|
|
"randint",
|
|
"randperm",
|
|
"zeros",
|
|
"tensor",
|
|
]
|
|
|
|
orig_empty = torch.empty # avoid override
|
|
|
|
scm = ShapeConsistencyManager()
|
|
|
|
|
|
class LazyTensor(torch.Tensor):
|
|
"""A naive implementation of LazyTensor (https://arxiv.org/pdf/2102.13267.pdf).
|
|
|
|
Usage:
|
|
1. Use ``LazyTensor`` instead of ``torch.Tensor``.
|
|
>>> x = LazyTensor(torch.zeros, 2, 3)
|
|
>>> x += 1
|
|
>>> y = x * x
|
|
>>> y = y.cuda().half()
|
|
>>> y[0, 0] = 0
|
|
>>> y = y.materialize() # materialize the tensor
|
|
>>> print(y)
|
|
tensor([[0., 1., 1.],
|
|
[1., 1., 1.]], device='cuda:0', dtype=torch.float16)
|
|
|
|
2. Generate ``MetaTensor`` from ``LazyTensor``
|
|
>>> x = LazyTensor(torch.zeros, 2, 3)
|
|
>>> x.reshape(3, 2)
|
|
>>> x = x.traceable() # generate ``MetaTensor``
|
|
>>> print(x)
|
|
MetaTensor(..., size=(3, 2), device=cpu, dtype=torch.float32)
|
|
|
|
3. Use ``LazyTensor`` to generate sharded ``nn.Parameter``.
|
|
>>> x = LazyTensor(torch.zeros, 2, 3)
|
|
>>> x.spec = ... # some ``ShardingSpec``
|
|
>>> x.distribute() # distribute the tensor according to the ``ShardingSpec``
|
|
|
|
Warnings:
|
|
1. Cases that ``LazyTensor`` can't deal with.
|
|
>>> x = LazyTensor(torch.ones, 2, 3)
|
|
>>> x[0, 0] = -x[0, 0] # this will cause infinite recursion
|
|
|
|
2. ``LazyTensor.materialize()`` can't be called multiple times.
|
|
>>> x = LazyTensor(torch.ones, 2, 3)
|
|
>>> x.materialize()
|
|
>>> x.materialize() # this is disallowed
|
|
"""
|
|
|
|
_repr = True
|
|
_meta_data: Optional[MetaTensor] = None # shape, dtype, device
|
|
_cached_data: Optional[torch.Tensor] = None # materialized data
|
|
|
|
@staticmethod
|
|
def __new__(cls, func, *args, dtype=None, device=None, **kwargs):
|
|
elem = func(*args, dtype=dtype, device='meta', **kwargs)
|
|
r = torch.Tensor._make_wrapper_subclass(cls,
|
|
elem.size(),
|
|
strides=elem.stride(),
|
|
storage_offset=elem.storage_offset(),
|
|
dtype=elem.dtype,
|
|
layout=elem.layout,
|
|
device=device if device is not None else torch.device('cpu'),
|
|
requires_grad=elem.requires_grad)
|
|
r._meta_data = MetaTensor(elem, fake_device=device)
|
|
return r
|
|
|
|
def __init__(self, func, *args, dtype=None, device=None, **kwargs):
|
|
self._factory_method = (func, args, {'dtype': dtype, 'device': device, **kwargs}) # (func, args, kwargs)
|
|
self._cached_buffer = list() # (func, args, kwargs)
|
|
self._spec = None
|
|
self._data = self
|
|
|
|
def __repr__(self):
|
|
if self._repr:
|
|
# avoid recursive representation
|
|
self.__class__._repr = False
|
|
s = f'LazyTensor(..., size={tuple(self._meta_data.shape)}, device={self._meta_data.device}, dtype={self._meta_data.dtype})\n'\
|
|
f'factory method: {self._factory_method}\n'\
|
|
f'cached: {pprint.pformat(self._cached_buffer) if self._cached_data is None else self._cached_data}\n'\
|
|
f'spec: {self._spec}'
|
|
self.__class__._repr = True
|
|
return s
|
|
else:
|
|
return 'LazyTensor(...)'
|
|
|
|
def materialize(self) -> torch.Tensor:
|
|
"""Materialize the ``LazyTensor`` to ``torch.Tensor``.
|
|
|
|
Warnings:
|
|
Calling ``self.materialize()`` will clear all cached sequence and factory method,
|
|
because we don't allow materialize the same ``LazyTensor`` twice.
|
|
This is mentioned in the paper: https://arxiv.org/pdf/2102.13267.pdf (Part 4.3).
|
|
|
|
Returns:
|
|
torch.Tensor: The materialized tensor.
|
|
"""
|
|
target = self._data._realize_cached_data()
|
|
if isinstance(self, nn.Parameter):
|
|
target = nn.Parameter(target, requires_grad=self.requires_grad)
|
|
self._clear_all()
|
|
return target
|
|
|
|
def traceable(self) -> MetaTensor:
|
|
"""Generate ``MetaTensor`` from ``LazyTensor``. (Mostly for tracing)
|
|
|
|
Returns:
|
|
MetaTensor: The generated ``MetaTensor``.
|
|
"""
|
|
if isinstance(self, nn.Parameter):
|
|
return nn.Parameter(self._meta_data, requires_grad=self.requires_grad)
|
|
else:
|
|
return self._meta_data
|
|
|
|
def distribute(self) -> torch.Tensor:
|
|
"""Distribute the ``LazyTensor`` according to the ``ShardingSpec``.
|
|
|
|
Returns:
|
|
torch.Tensor: The sharded tensor.
|
|
"""
|
|
if self._spec is None:
|
|
raise RuntimeError('ShardingSpec is not set for\n{self}')
|
|
spec, device_mesh = self._spec, self._spec.device_mesh
|
|
target = self.materialize()
|
|
|
|
# TODO(some man): better not be coupled with auto-parallel
|
|
target.data = scm.apply_for_autoparallel_runtime(target.data, ShardingSpec(device_mesh, target.shape, {}),
|
|
spec).detach().clone()
|
|
return target
|
|
|
|
def _realize_cached_data(self) -> torch.Tensor:
|
|
# self._cached_data should be generated after the first call of this function
|
|
if self._cached_data is None:
|
|
if self._factory_method is not None:
|
|
# apply factory method
|
|
func, args, kwargs = self._factory_method
|
|
|
|
# apply cached sequence
|
|
self._cached_data = self._apply_cache_buffer(func(*args, **kwargs))
|
|
else:
|
|
# apply cached sequence only
|
|
self._cached_data = self._apply_cache_buffer()
|
|
return self._cached_data
|
|
|
|
def _apply_cache_buffer(self, target=None) -> torch.Tensor:
|
|
# dump all cached sequence
|
|
# super-dainiu: support methods for single Tensor only
|
|
def replace(x):
|
|
if x is self:
|
|
return target
|
|
elif isinstance(x, LazyTensor):
|
|
return x._realize_cached_data()
|
|
return x
|
|
|
|
packed = None
|
|
|
|
for (func, args, kwargs) in self._cached_buffer:
|
|
if func == torch.Tensor.requires_grad_:
|
|
packed = func, args, kwargs # requires grad should be set at last
|
|
else:
|
|
o = func(*tree_map(replace, args), **tree_map(replace, kwargs))
|
|
target = o if isinstance(o, torch.Tensor) else target # if func returns non-Tensor, discard the value
|
|
|
|
# super-dainiu: set requires_grad after all inplace-ops are done
|
|
if packed is not None:
|
|
func, args, kwargs = packed
|
|
func(*tree_map(replace, args), **tree_map(replace, kwargs))
|
|
|
|
return target
|
|
|
|
# clear all means:
|
|
# 1. clear factory method
|
|
# 2. clear cached sequence
|
|
# 3. clear cached data
|
|
def _clear_all(self):
|
|
self._cached_data = None
|
|
self._cached_buffer = None
|
|
self._data = None
|
|
gc.collect() # avoid memory leak
|
|
|
|
# cache everything with __torch_function__
|
|
@classmethod
|
|
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
target = None
|
|
|
|
if isinstance(func, torch._C.ScriptMethod):
|
|
|
|
def unwrap(x):
|
|
if isinstance(x, LazyTensor):
|
|
return x._meta_data
|
|
return x
|
|
|
|
target: LazyTensor = args[0].clone()
|
|
target._cached_buffer.append((func, args, kwargs))
|
|
target._meta_data = getattr(target._meta_data, func.name)(*tree_map(unwrap, args[1:]),
|
|
**tree_map(unwrap, kwargs))
|
|
|
|
else:
|
|
|
|
def unwrap(x):
|
|
nonlocal target
|
|
if isinstance(x, LazyTensor):
|
|
target = x if (func.__name__.endswith('_') and not (func.__name__.endswith('__'))
|
|
or func.__name__ == "__setitem__") else x.clone()
|
|
target._cached_buffer.append((func, args, kwargs))
|
|
return x._meta_data
|
|
return x
|
|
|
|
args = tree_map(unwrap, args)
|
|
kwargs = tree_map(unwrap, kwargs)
|
|
o = func(*args, **kwargs)
|
|
|
|
if isinstance(o, MetaTensor):
|
|
target._meta_data = o
|
|
return target
|
|
else:
|
|
return o
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
pass # skip
|
|
|
|
def clone(self) -> "LazyTensor":
|
|
"""Create a new ``LazyTensor`` with same cached sequence and factory method.
|
|
|
|
Returns:
|
|
LazyTensor: the new ``LazyTensor``
|
|
"""
|
|
target = LazyTensor(orig_empty, 0, dtype=self._meta_data.dtype, device=self._meta_data.device)
|
|
target._factory_method = None
|
|
target._cached_buffer = list()
|
|
target._meta_data = self._meta_data.clone()
|
|
target._cached_data = self._cached_data.clone() if self._cached_data is not None else None
|
|
target._spec = copy.deepcopy(self._spec)
|
|
return target
|
|
|
|
def detach(self) -> "LazyTensor":
|
|
target = self.clone()
|
|
target._cached_buffer.append((torch.Tensor.detach_, (self,), {}))
|
|
return target
|
|
|
|
@property
|
|
def spec(self) -> ShardingSpec:
|
|
return self._spec
|
|
|
|
@spec.setter
|
|
def spec(self, other: ShardingSpec):
|
|
self._spec = other
|
|
|
|
@property
|
|
def data(self) -> "LazyTensor":
|
|
return self._data.detach()
|
|
|
|
@data.setter
|
|
def data(self, other: "LazyTensor") -> "LazyTensor":
|
|
"""This avoid the following infinite recursion, which is very common in ``nn.Module`` initialization.
|
|
|
|
Usage:
|
|
>>> a = LazyTensor(torch.empty, 0, dtype=torch.float32, device='cpu')
|
|
>>> b = a.cuda()
|
|
>>> a.data = b
|
|
"""
|
|
self._data = other
|
|
|
|
|
|
class LazyInitContext():
|
|
"""Context manager for lazy initialization. Enables initializing the model without allocating real memory.
|
|
|
|
Usage:
|
|
1. The model is initialized, but no real memory is allocated.
|
|
>>> ctx = LazyInitContext()
|
|
>>> with ctx:
|
|
>>> model = MyModel().cuda()
|
|
|
|
2. The model is initialized with ``MetaTensor`` as weights, but still no real memory is allocated.
|
|
>>> with ctx.traceable(model):
|
|
>>> gm = symbolic_trace(model, meta_args=meta_args)
|
|
>>> # Solve the execution strategy and apply the strategy to the model
|
|
>>> strategy = StrategyAndSpec()
|
|
|
|
3. The model is initialized with ``torch.Tensor`` as weights, and real memory is allocated. (single device)
|
|
>>> model = ctx.materialize(model)
|
|
|
|
3. The model is initialized with sharded ``torch.Tensor`` as weights, and real memory is allocated. (distributed scenario)
|
|
>>> model = apply_strategy_to_all_params(model, strategy)
|
|
>>> model = ctx.distribute(model)
|
|
|
|
Warnings:
|
|
This API is still experimental and further modifications can be made to it.
|
|
For example:
|
|
1. Quantization strategies can be applied before allocating real memory.
|
|
2. Lazy initialization seems slower than normal initialization.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.overrides = {}
|
|
|
|
def __enter__(self):
|
|
|
|
def wrap_factory_method(target):
|
|
# factory functions (eg. torch.empty())
|
|
def wrapper(*args, **kwargs):
|
|
return LazyTensor(target, *args, **kwargs)
|
|
|
|
return wrapper, target
|
|
|
|
def wrap_factory_like_method(orig_target, target):
|
|
# factory_like functions (eg. torch.empty_like())
|
|
def wrapper(*args, **kwargs):
|
|
orig_t = args[0]
|
|
return LazyTensor(orig_target, *args[1:], device=orig_t.device, dtype=orig_t.dtype, **kwargs)
|
|
|
|
return wrapper, target
|
|
|
|
self.overrides = {
|
|
target: wrap_factory_method(getattr(torch, target))
|
|
for target in _TorchFactoryMethod
|
|
if callable(getattr(torch, target, None))
|
|
}
|
|
|
|
self.overrides.update({
|
|
target + '_like': wrap_factory_like_method(getattr(torch, target), getattr(torch, target + '_like'))
|
|
for target in _TorchFactoryMethod
|
|
if callable(getattr(torch, target + '_like', None))
|
|
})
|
|
|
|
for name, (wrapper, orig) in self.overrides.items():
|
|
setattr(torch, name, wrapper)
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
for name, (wrapper, orig) in self.overrides.items():
|
|
setattr(torch, name, orig)
|
|
|
|
@staticmethod
|
|
def materialize(module: torch.nn.Module):
|
|
"""Initialize all ``nn.Parameter`` from ``LazyTensor``.
|
|
|
|
Args:
|
|
module (torch.nn.Module): Target ``nn.Module``
|
|
"""
|
|
|
|
@torch.no_grad()
|
|
def init_recursively(module: nn.Module):
|
|
# recursively initialize the module
|
|
for mod in module.children():
|
|
init_recursively(mod)
|
|
|
|
# initialize tensors directly attached to the current module
|
|
for name, param in module.named_parameters(recurse=False):
|
|
setattr(module, name, param.materialize())
|
|
|
|
for name, buf in module.named_buffers(recurse=False):
|
|
setattr(module, name, buf.materialize())
|
|
|
|
init_recursively(module)
|
|
return module
|
|
|
|
@staticmethod
|
|
def distribute(module: torch.nn.Module):
|
|
"""Initialize and shard all ``nn.Parameter`` from ``LazyTensor``.
|
|
|
|
Args:
|
|
module (torch.nn.Module): Sharded target ``nn.Module``
|
|
"""
|
|
|
|
@torch.no_grad()
|
|
def init_recursively(module: nn.Module):
|
|
# recursively initialize the module
|
|
for mod in module.children():
|
|
init_recursively(mod)
|
|
|
|
# initialize tensors directly attached to the current module
|
|
for name, param in module.named_parameters(recurse=False):
|
|
setattr(module, name, param.distribute())
|
|
|
|
for name, buf in module.named_buffers(recurse=False):
|
|
setattr(module, name, buf.distribute())
|
|
|
|
init_recursively(module)
|
|
return module
|
|
|
|
@staticmethod
|
|
@contextlib.contextmanager
|
|
def traceable(module: torch.nn.Module):
|
|
"""Initialize all ``nn.Parameters`` as ``MetaTensor``. This enables ``ColoTracer`` with control flow.
|
|
|
|
Args:
|
|
module (torch.nn.Module): Traceable ``nn.Module`` with ``MetaTensor`` as parameters.
|
|
"""
|
|
orig_val = dict()
|
|
|
|
def init_recursively(module: nn.Module):
|
|
# recursively initialize the module
|
|
for mod in module.children():
|
|
init_recursively(mod)
|
|
|
|
# initialize tensors directly attached to the current module
|
|
for name, param in module.named_parameters(recurse=False):
|
|
setattr(module, name, param.traceable())
|
|
orig_val[(module, name)] = param
|
|
|
|
for name, buf in module.named_buffers(recurse=False):
|
|
setattr(module, name, buf.traceable())
|
|
orig_val[(module, name)] = buf
|
|
|
|
init_recursively(module)
|
|
|
|
yield
|
|
|
|
# restore original values
|
|
for (module, name), val in orig_val.items():
|
|
setattr(module, name, val)
|