mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-21 21:22:04 +00:00
* init
* rename and remove useless func
* basic chunk
* add evoformer
* align evoformer
* add meta
* basic chunk
* basic memory
* finish basic inference memory estimation
* finish memory estimation
* fix bug
* finish memory estimation
* add part of index tracer
* finish basic index tracer
* add doc string
* add doc str
* polish code
* polish code
* update active log
* polish code
* add possible region search
* finish region search loop
* finish chunk define
* support new op
* rename index tracer
* finishi codegen on msa
* redesign index tracer, add source and change compute
* pass outproduct mean
* code format
* code format
* work with outerproductmean and msa
* code style
* code style
* code style
* code style
* change threshold
* support check_index_duplicate
* support index dupilictae and update loop
* support output
* update memory estimate
* optimise search
* fix layernorm
* move flow tracer
* refactor flow tracer
* format code
* refactor flow search
* code style
* adapt codegen to prepose node
* code style
* remove abandoned function
* remove flow tracer
* code style
* code style
* reorder nodes
* finish node reorder
* update run
* code style
* add chunk select class
* add chunk select
* code style
* add chunksize in emit, fix bug in reassgin shape
* code style
* turn off print mem
* add evoformer openfold init
* init openfold
* add benchmark
* add print
* code style
* code style
* init openfold
* update openfold
* align openfold
* use max_mem to control stratge
* update source add
* add reorder in mem estimator
* improve reorder efficeincy
* support ones_like, add prompt if fit mode search fail
* fix a bug in ones like, dont gen chunk if dim size is 1
* fix bug again
* update min memory stratege, reduce mem usage by 30%
* last version of benchmark
* refactor structure
* restruct dir
* update test
* rename
* take apart chunk code gen
* close mem and code print
* code format
* rename ambiguous variable
* seperate flow tracer
* seperate input node dim search
* seperate prepose_nodes
* seperate non chunk input
* seperate reorder
* rename
* ad reorder graph
* seperate trace flow
* code style
* code style
* fix typo
* set benchmark
* rename test
* update codegen test
* Fix state_dict key missing issue of the ZeroDDP (#2363)
* Fix state_dict output for ZeroDDP duplicated parameters
* Rewrite state_dict based on get_static_torch_model
* Modify get_static_torch_model to be compatible with the lower version (ZeroDDP)
* update codegen test
* update codegen test
* add chunk search test
* code style
* add available
* [hotfix] fix gpt gemini example (#2404)
* [hotfix] fix gpt gemini example
* [example] add new assertions
* remove autochunk_available
* [workflow] added nightly release to pypi (#2403)
* add comments
* code style
* add doc for search chunk
* [doc] updated readme regarding pypi installation (#2406)
* add doc for search
* [doc] updated kernel-related optimisers' docstring (#2385)
* [doc] updated kernel-related optimisers' docstring
* polish doc
* rename trace_index to trace_indice
* rename function from index to indice
* rename
* rename in doc
* [polish] polish code for get_static_torch_model (#2405)
* [gemini] polish code
* [testing] remove code
* [gemini] make more robust
* rename
* rename
* remove useless function
* [worfklow] added coverage test (#2399)
* [worfklow] added coverage test
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* add doc for trace indice
* [docker] updated Dockerfile and release workflow (#2410)
* add doc
* update doc
* add available
* change imports
* add test in import
* [workflow] refactored the example check workflow (#2411)
* [workflow] refactored the example check workflow
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* Update parallel_context.py (#2408)
* [hotfix] add DISTPAN argument for benchmark (#2412)
* change the benchmark config file
* change config
* revert config file
* rename distpan to distplan
* [workflow] added precommit check for code consistency (#2401)
* [workflow] added precommit check for code consistency
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* polish code
* adapt new fx
* [workflow] added translation for non-english comments (#2414)
* [setup] refactored setup.py for dependency graph (#2413)
* change import
* update doc
* [workflow] auto comment if precommit check fails (#2417)
* [hotfix] add norm clearing for the overflow step (#2416)
* [examples] adding tflops to PaLM (#2365)
* [workflow]auto comment with test coverage report (#2419)
* [workflow]auto comment with test coverage report
* polish code
* polish yaml
* [doc] added documentation for CI/CD (#2420)
* [doc] added documentation for CI/CD
* polish markdown
* polish markdown
* polish markdown
* [example] removed duplicated stable diffusion example (#2424)
* [zero] add inference mode and its unit test (#2418)
* [workflow] report test coverage even if below threshold (#2431)
* [example] improved the clarity yof the example readme (#2427)
* [example] improved the clarity yof the example readme
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* polish workflow
* [ddp] add is_ddp_ignored (#2434)
[ddp] rename to is_ddp_ignored
* [workflow] make test coverage report collapsable (#2436)
* [autoparallel] add shard option (#2423)
* [fx] allow native ckpt trace and codegen. (#2438)
* [cli] provided more details if colossalai run fail (#2442)
* [autoparallel] integrate device mesh initialization into autoparallelize (#2393)
* [autoparallel] integrate device mesh initialization into autoparallelize
* add megatron solution
* update gpt autoparallel examples with latest api
* adapt beta value to fit the current computation cost
* [zero] fix state_dict and load_state_dict for ddp ignored parameters (#2443)
* [ddp] add is_ddp_ignored
[ddp] rename to is_ddp_ignored
* [zero] fix state_dict and load_state_dict
* fix bugs
* [zero] update unit test for ZeroDDP
* [example] updated the hybrid parallel tutorial (#2444)
* [example] updated the hybrid parallel tutorial
* polish code
* [zero] add warning for ignored parameters (#2446)
* [example] updated large-batch optimizer tutorial (#2448)
* [example] updated large-batch optimizer tutorial
* polish code
* polish code
* [example] fixed seed error in train_dreambooth_colossalai.py (#2445)
* [workflow] fixed the on-merge condition check (#2452)
* [workflow] automated the compatiblity test (#2453)
* [workflow] automated the compatiblity test
* polish code
* [autoparallel] update binary elementwise handler (#2451)
* [autoparallel] update binary elementwise handler
* polish
* [workflow] automated bdist wheel build (#2459)
* [workflow] automated bdist wheel build
* polish workflow
* polish readme
* polish readme
* Fix False warning in initialize.py (#2456)
* Update initialize.py
* pre-commit run check
* [examples] update autoparallel tutorial demo (#2449)
* [examples] update autoparallel tutorial demo
* add test_ci.sh
* polish
* add conda yaml
* [cli] fixed hostname mismatch error (#2465)
* [example] integrate autoparallel demo with CI (#2466)
* [example] integrate autoparallel demo with CI
* polish code
* polish code
* polish code
* polish code
* [zero] low level optim supports ProcessGroup (#2464)
* [example] update vit ci script (#2469)
* [example] update vit ci script
* [example] update requirements
* [example] update requirements
* [example] integrate seq-parallel tutorial with CI (#2463)
* [zero] polish low level optimizer (#2473)
* polish pp middleware (#2476)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [example] update gpt gemini example ci test (#2477)
* [zero] add unit test for low-level zero init (#2474)
* [workflow] fixed the skip condition of example weekly check workflow (#2481)
* [example] stable diffusion add roadmap
* add dummy test_ci.sh
* [example] stable diffusion add roadmap (#2482)
* [CI] add test_ci.sh for palm, opt and gpt (#2475)
* polish code
* [example] titans for gpt
* polish readme
* remove license
* polish code
* update readme
* [example] titans for gpt (#2484)
* [autoparallel] support origin activation ckpt on autoprallel system (#2468)
* [autochunk] support evoformer tracer (#2485)
support full evoformer tracer, which is a main module of alphafold. previously we just support a simplifed version of it.
1. support some evoformer's op in fx
2. support evoformer test
3. add repos for test code
* [example] fix requirements (#2488)
* [zero] add unit testings for hybrid parallelism (#2486)
* [hotfix] gpt example titans bug #2493
* polish code and fix dataloader bugs
* [hotfix] gpt example titans bug #2493 (#2494)
* [fx] allow control of ckpt_codegen init (#2498)
* [fx] allow control of ckpt_codegen init
Currently in ColoGraphModule, ActivationCheckpointCodeGen will be set automatically in __init__. But other codegen can't be set if so.
So I add an arg to control whether to set ActivationCheckpointCodeGen in __init__.
* code style
* [example] dreambooth example
* add test_ci.sh to dreambooth
* [autochunk] support autochunk on evoformer (#2497)
* Revert "Update parallel_context.py (#2408)"
This reverts commit 7d5640b9db
.
* add avg partition (#2483)
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
* [auto-chunk] support extramsa (#3) (#2504)
* [utils] lazy init. (#2148)
* [utils] lazy init.
* [utils] remove description.
* [utils] complete.
* [utils] finalize.
* [utils] fix names.
* [autochunk] support parsing blocks (#2506)
* [zero] add strict ddp mode (#2508)
* [zero] add strict ddp mode
* [polish] add comments for strict ddp mode
* [zero] fix test error
* [doc] update opt and tutorial links (#2509)
* [workflow] fixed changed file detection (#2515)
Co-authored-by: oahzxl <xuanlei.zhao@gmail.com>
Co-authored-by: eric8607242 <e0928021388@gmail.com>
Co-authored-by: HELSON <c2h214748@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Haofan Wang <haofanwang.ai@gmail.com>
Co-authored-by: Jiarui Fang <fangjiarui123@gmail.com>
Co-authored-by: ZijianYY <119492445+ZijianYY@users.noreply.github.com>
Co-authored-by: YuliangLiu0306 <72588413+YuliangLiu0306@users.noreply.github.com>
Co-authored-by: Super Daniel <78588128+super-dainiu@users.noreply.github.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang97@gmail.com>
Co-authored-by: Ziyue Jiang <ziyue.jiang@gmail.com>
Co-authored-by: oahzxl <43881818+oahzxl@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Fazzie-Maqianli <55798671+Fazziekey@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
175 lines
7.3 KiB
Python
175 lines
7.3 KiB
Python
import os
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from timm.models.vision_transformer import _create_vision_transformer
|
|
from titans.dataloader.imagenet import build_dali_imagenet
|
|
from tqdm import tqdm
|
|
from vit import DummyDataLoader
|
|
|
|
import colossalai
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
|
from colossalai.nn import CrossEntropyLoss
|
|
from colossalai.nn._ops import *
|
|
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.nn.parallel.data_parallel import ColoDDP
|
|
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
|
|
|
|
def init_1d_row_for_linear_weight_spec(model, world_size: int):
|
|
pg = ProcessGroup(tp_degree=world_size)
|
|
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
|
with DistSpecManager.no_grad():
|
|
for n, p in model.named_parameters():
|
|
if 'weight' in n and 'norm' not in n and 'patch_embed.proj.weight' not in n:
|
|
p.set_process_group(pg)
|
|
p.set_tensor_spec(*spec)
|
|
|
|
|
|
# Similarly, it's col split for Linear but row split for others.
|
|
def init_1d_col_for_linear_weight_bias_spec(model, world_size: int):
|
|
pg = ProcessGroup(tp_degree=world_size)
|
|
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
|
with DistSpecManager.no_grad():
|
|
for n, p in model.named_parameters():
|
|
if ('weight' in n or 'bias' in n) and 'norm' not in n and ('patch_embed.proj.weight' not in n
|
|
and 'patch_embed.proj.bias' not in n):
|
|
p.set_process_group(pg)
|
|
p.set_tensor_spec(*spec)
|
|
|
|
|
|
def init_spec_func(model, tp_type):
|
|
world_size = torch.distributed.get_world_size()
|
|
if tp_type == 'row':
|
|
init_1d_row_for_linear_weight_spec(model, world_size)
|
|
elif tp_type == 'col':
|
|
init_1d_col_for_linear_weight_bias_spec(model, world_size)
|
|
else:
|
|
raise NotImplemented
|
|
|
|
|
|
def train_imagenet():
|
|
|
|
parser = colossalai.get_default_parser()
|
|
parser.add_argument('--resume_from', default=False, action='store_true')
|
|
parser.add_argument('--dummy_data', default=False, action='store_true')
|
|
|
|
args = parser.parse_args()
|
|
colossalai.launch_from_torch(config=args.config)
|
|
use_ddp = gpc.config.USE_DDP
|
|
|
|
disable_existing_loggers()
|
|
|
|
logger = get_dist_logger()
|
|
if hasattr(gpc.config, 'LOG_PATH'):
|
|
if gpc.get_global_rank() == 0:
|
|
log_path = gpc.config.LOG_PATH
|
|
if not os.path.exists(log_path):
|
|
os.mkdir(log_path)
|
|
logger.log_to_file(log_path)
|
|
|
|
logger.info('Build data loader', ranks=[0])
|
|
if not args.dummy_data:
|
|
root = os.environ['DATA']
|
|
train_dataloader, test_dataloader = build_dali_imagenet(root,
|
|
train_batch_size=gpc.config.BATCH_SIZE,
|
|
test_batch_size=gpc.config.BATCH_SIZE)
|
|
else:
|
|
train_dataloader = DummyDataLoader(length=10,
|
|
batch_size=gpc.config.BATCH_SIZE,
|
|
category=gpc.config.NUM_CLASSES,
|
|
image_size=gpc.config.IMG_SIZE,
|
|
return_dict=False)
|
|
test_dataloader = DummyDataLoader(length=5,
|
|
batch_size=gpc.config.BATCH_SIZE,
|
|
category=gpc.config.NUM_CLASSES,
|
|
image_size=gpc.config.IMG_SIZE,
|
|
return_dict=False)
|
|
|
|
logger.info('Build model', ranks=[0])
|
|
|
|
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
|
|
patch_size=gpc.config.PATCH_SIZE,
|
|
embed_dim=gpc.config.HIDDEN_SIZE,
|
|
depth=gpc.config.DEPTH,
|
|
num_heads=gpc.config.NUM_HEADS,
|
|
mlp_ratio=gpc.config.MLP_RATIO,
|
|
num_classes=gpc.config.NUM_CLASSES,
|
|
drop_rate=0.1,
|
|
attn_drop_rate=0.1,
|
|
weight_init='jax')
|
|
|
|
with ColoInitContext(device=get_current_device()):
|
|
model = _create_vision_transformer('vit_small_patch16_224', pretrained=False, **model_kwargs)
|
|
init_spec_func(model, gpc.config.TP_TYPE)
|
|
|
|
world_size = torch.distributed.get_world_size()
|
|
model = ColoDDP(module=model, process_group=ProcessGroup(tp_degree=world_size))
|
|
logger.info('Build criterion, optimizer, lr_scheduler', ranks=[0])
|
|
optimizer = HybridAdam(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
|
|
|
|
criterion = CrossEntropyLoss()
|
|
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
|
|
total_steps=gpc.config.NUM_EPOCHS,
|
|
warmup_steps=gpc.config.WARMUP_EPOCHS)
|
|
|
|
start_epoch = 0
|
|
if args.resume_from:
|
|
load_model = torch.load(args.resume_from + '_model.pth')
|
|
start_epoch = load_model['epoch']
|
|
model.load_state_dict(load_model['model'])
|
|
load_optim = torch.load(args.resume_from + '_optim_rank_{}.pth'.format(dist.get_rank()))
|
|
optimizer.load_state_dict(load_optim['optim'])
|
|
|
|
for epoch in range(start_epoch, gpc.config.NUM_EPOCHS):
|
|
model.train()
|
|
for index, (x, y) in tqdm(enumerate(train_dataloader), total=len(train_dataloader), leave=False):
|
|
x, y = x.cuda(), y.cuda()
|
|
output = model(x)
|
|
loss = criterion(output, y)
|
|
loss = loss / gpc.config.gradient_accumulation
|
|
if use_ddp:
|
|
model.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
if (index + 1) % gpc.config.gradient_accumulation == 0:
|
|
optimizer.step()
|
|
if use_ddp:
|
|
model.zero_grad()
|
|
else:
|
|
optimizer.zero_grad()
|
|
|
|
logger.info(
|
|
f"Finish Train Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {loss.item():.3f} lr: {optimizer.state_dict()['param_groups'][0]['lr']}",
|
|
ranks=[0])
|
|
|
|
model.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
test_sum = 0
|
|
with torch.no_grad():
|
|
for index, (x, y) in tqdm(enumerate(test_dataloader), total=len(test_dataloader), leave=False):
|
|
x, y = x.cuda(), y.cuda()
|
|
output = model(x)
|
|
test_loss += F.cross_entropy(output, y, reduction='sum').item()
|
|
pred = output.argmax(dim=1, keepdim=True)
|
|
correct += pred.eq(y.view_as(pred)).sum().item()
|
|
test_sum += y.size(0)
|
|
|
|
test_loss /= test_sum
|
|
logger.info(
|
|
f"Finish Test Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {test_loss:.3f} Accuracy: [{correct}/{test_sum}]({correct/test_sum:.3f})",
|
|
ranks=[0])
|
|
|
|
lr_scheduler.step()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
train_imagenet()
|