ColossalAI/applications/ColossalChat/coati/models/reward_model.py
YeAnbang df5e9c53cf
[ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all

* fix and tested ppo

* 2 nd round refactor

* add ci tests

* fix ci

* fix ci

* fix readme, style

* fix readme style

* fix style, fix benchmark

* reproduce benchmark result, remove useless files

* rename to ColossalChat

* use new image

* fix ci workflow

* fix ci

* use local model/tokenizer for ci tests

* fix ci

* fix ci

* fix ci

* fix ci timeout

* fix rm progress bar. fix ci timeout

* fix ci

* fix ci typo

* remove 3d plugin from ci temporary

* test environment

* cannot save optimizer

* support chat template

* fix readme

* fix path

* test ci locally

* restore build_or_pr

* fix ci data path

* fix benchmark

* fix ci, move ci tests to 3080, disable fast tokenizer

* move ci to 85

* support flash attention 2

* add all-in-one data preparation script. Fix colossal-llama2-chat chat template

* add hardware requirements

* move ci test data

* fix save_model, add unwrap

* fix missing bos

* fix missing bos; support grad accumulation with gemini

* fix ci

* fix ci

* fix ci

* fix llama2 chat template config

* debug sft

* debug sft

* fix colossalai version requirement

* fix ci

* add sanity check to prevent NaN loss

* fix requirements

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* update readme

* update readme

* update readme and ignore

* fix logger bug

* support parallel_output

* modify data preparation logic

* fix tokenization

* update lr

* fix inference

* run pre-commit

---------

Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 14:12:29 +08:00

39 lines
1.4 KiB
Python
Executable File

"""
reward model
"""
from typing import Optional
import torch
import torch.nn as nn
from coati.models import BaseModel
from transformers import PretrainedConfig
class RewardModel(BaseModel):
"""
Reward model class.
Args:
pretrained str: huggingface or local model path
config: PretrainedConfig object
**kwargs: all other kwargs as in AutoModel.from_pretrained
"""
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
super().__init__(pretrained=pretrained, config=config, **kwargs)
self.value_head = nn.Linear(self.last_hidden_state_size, 1)
self.value_head.weight.data.normal_(mean=0.0, std=1 / (self.last_hidden_state_size + 1))
def forward(self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
outputs = self.model(input_ids, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
sequence_lengths = torch.max(attention_mask * torch.arange(input_ids.size(1), device=input_ids.device), dim=1)[
0
]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths].type(
self.value_head.weight.dtype
)
values = self.value_head(sequence_hidden_states).squeeze(-1) # Ensure shape is (B,)
return values