mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-13 21:55:46 +00:00
* Detached ppo (#9) * run the base * working on dist ppo * sync * detached trainer * update detached trainer. no maker update function * facing init problem * 1 maker 1 trainer detached run. but no model update * facing cuda problem * fix save functions * verified maker update * nothing * add ignore * analyize loss issue * remove some debug codes * facing 2m1t stuck issue * 2m1t verified * do not use torchrun * working on 2m2t * working on 2m2t * initialize strategy in ray actor env * facing actor's init order issue * facing ddp model update issue (need unwarp ddp) * unwrap ddp actor * checking 1m2t stuck problem * nothing * set timeout for trainer choosing. It solves the stuck problem! * delete some debug output * rename to sync with upstream * rename to sync with upstream * coati rename * nothing * I am going to detach the replaybuffer from trainer and make it a Ray Actor. Two benefits: 1. support TP trainer. 2. asynchronized buffer operations * experience_maker_holder performs target-revolving _send_experience() instead of length comparison. * move code to ray subfolder * working on pipeline inference * apply comments * working on pipeline strategy. in progress. * remove pipeline code. clean this branch * update remote parameters by state_dict. no test * nothing * state_dict sharding transfer * merge debug branch * gemini _unwrap_model fix * simplify code * simplify code & fix LoRALinear AttributeError * critic unwrapped state_dict --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] add perfomance evaluator and fix bugs (#10) * [chat] add performance evaluator for ray * [chat] refactor debug arg * [chat] support hf config * [chat] fix generation * [chat] add 1mmt dummy example * [chat] fix gemini ckpt * split experience to send (#11) Co-authored-by: csric <richcsr256@gmail.com> * [chat] refactor trainer and maker (#12) * [chat] refactor experience maker holder * [chat] refactor model init * [chat] refactor trainer args * [chat] refactor model init * [chat] refactor trainer * [chat] refactor experience sending logic and training loop args (#13) * [chat] refactor experience send logic * [chat] refactor trainer * [chat] refactor trainer * [chat] refactor experience maker * [chat] refactor pbar * [chat] refactor example folder (#14) * [chat] support quant (#15) * [chat] add quant * [chat] add quant example * prompt example (#16) * prompt example * prompt load csv data * remove legacy try --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] add mmmt dummy example and refactor experience sending (#17) * [chat] add mmmt dummy example * [chat] refactor naive strategy * [chat] fix struck problem * [chat] fix naive strategy * [chat] optimize experience maker sending logic * [chat] refactor sending assignment * [chat] refactor performance evaluator (#18) * Prompt Example & requires_grad state_dict & sharding state_dict (#19) * prompt example * prompt load csv data * remove legacy try * maker models require_grad set to False * working on zero redundancy update * mmmt_prompt example; naive strategy requires_grad state_dict & sharding; maker model requires_no_grad. * remove legacy examples * remove legacy examples * remove replay buffer tp state. bad design --------- Co-authored-by: csric <richcsr256@gmail.com> * state_dict sending adapts to new unwrap function (#20) * prompt example * prompt load csv data * remove legacy try * maker models require_grad set to False * working on zero redundancy update * mmmt_prompt example; naive strategy requires_grad state_dict & sharding; maker model requires_no_grad. * remove legacy examples * remove legacy examples * remove replay buffer tp state. bad design * opt benchmark * better script * nothing * [chat] strategy refactor unwrap model * [chat] strategy refactor save model * [chat] add docstr * [chat] refactor trainer save model * [chat] fix strategy typing * [chat] refactor trainer save model * [chat] update readme * [chat] fix unit test * working on lora reconstruction * state_dict sending adapts to new unwrap function * remove comments --------- Co-authored-by: csric <richcsr256@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * [chat-ray] add readme (#21) * add readme * transparent graph * add note background --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] get images from url (#22) * Refactor/chat ray (#23) * [chat] lora add todo * [chat] remove unused pipeline strategy * [chat] refactor example structure * [chat] setup ci for ray * [chat-ray] Support LoRA trainer. LoRA weights reconstruction. (#24) * lora support prototype * lora support * 1mmt lora & remove useless code --------- Co-authored-by: csric <richcsr256@gmail.com> * [chat] fix test ci for ray * [chat] fix test ci requirements for ray * [chat] fix ray runtime env * [chat] fix ray runtime env * [chat] fix example ci docker args * [chat] add debug info in trainer * [chat] add nccl debug info * [chat] skip ray test * [doc] fix typo --------- Co-authored-by: csric <59389055+CsRic@users.noreply.github.com> Co-authored-by: csric <richcsr256@gmail.com>
136 lines
4.6 KiB
Python
136 lines
4.6 KiB
Python
from abc import ABC, abstractmethod
|
|
from contextlib import nullcontext
|
|
from typing import Any, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from coati.models.base import Actor, get_base_model
|
|
from coati.replay_buffer import ReplayBuffer
|
|
from torch.optim import Optimizer
|
|
from torch.utils.data import DataLoader
|
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
|
|
|
from .sampler import DistributedSampler
|
|
|
|
ModelOptimPair = Tuple[nn.Module, Optimizer]
|
|
ModelOrModelOptimPair = Union[nn.Module, ModelOptimPair]
|
|
|
|
|
|
class Strategy(ABC):
|
|
"""
|
|
Base class for training strategies.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.setup_distributed()
|
|
|
|
@abstractmethod
|
|
def backward(self, loss: torch.Tensor, model: nn.Module, optimizer: Optimizer, **kwargs) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def optimizer_step(self, optimizer: Optimizer, **kwargs) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_distributed(self) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_model(self, model: nn.Module) -> nn.Module:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_optimizer(self, optimizer: Optimizer, model: nn.Module) -> Optimizer:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
|
|
pass
|
|
|
|
def model_init_context(self):
|
|
return nullcontext()
|
|
|
|
def prepare(
|
|
self, *models_or_model_optim_pairs: ModelOrModelOptimPair
|
|
) -> Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]:
|
|
"""Prepare models or model-optimizer-pairs based on each strategy.
|
|
|
|
Example::
|
|
>>> # when fine-tuning actor and critic
|
|
>>> (actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare((actor, actor_optim), (critic, critic_optim), reward_model, initial_model)
|
|
>>> # or when training reward model
|
|
>>> (reward_model, reward_model_optim) = strategy.prepare((reward_model, reward_model_optim))
|
|
>>> # or just inference
|
|
>>> actor, critic = strategy.prepare(actor, critic)
|
|
|
|
Returns:
|
|
Union[List[ModelOrModelOptimPair], ModelOrModelOptimPair]: Models or model-optimizer-pairs in the original order.
|
|
"""
|
|
|
|
def prepare_model(model: nn.Module):
|
|
if isinstance(model, Actor):
|
|
return Actor(self.setup_model(model.get_base_model()))
|
|
return self.setup_model(model)
|
|
|
|
rets = []
|
|
for arg in models_or_model_optim_pairs:
|
|
if isinstance(arg, tuple):
|
|
assert len(arg) == 2, f'Expect (model, optimizer) pair, got a tuple with size "{len(arg)}"'
|
|
model, optimizer = arg
|
|
model = prepare_model(model)
|
|
optimizer = self.setup_optimizer(optimizer, get_base_model(model))
|
|
rets.append((model, optimizer))
|
|
elif isinstance(arg, nn.Module):
|
|
rets.append(prepare_model(arg))
|
|
else:
|
|
raise RuntimeError(f'Expect model or (model, optimizer) pair, got {type(arg)}')
|
|
|
|
if len(rets) == 1:
|
|
return rets[0]
|
|
return rets
|
|
|
|
@staticmethod
|
|
def unwrap_model(model: nn.Module) -> nn.Module:
|
|
"""Get the unwrapped model from a wrapped model. Useful for getting original huggingface model.
|
|
For Actor, it will unwrap `actor.model`.
|
|
|
|
Args:
|
|
model (nn.Module): the model to unwrap
|
|
|
|
Returns:
|
|
nn.Module: the original model (usually a huggingface model)
|
|
"""
|
|
return get_base_model(model)
|
|
|
|
@abstractmethod
|
|
def save_model(self, model: nn.Module, path: str, only_rank0: bool = True) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def load_model(self, model: nn.Module, path: str, map_location: Any = None, strict: bool = True) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def load_optimizer(self, optimizer: Optimizer, path: str, map_location: Any = None) -> None:
|
|
pass
|
|
|
|
def setup_sampler(self, dataset) -> DistributedSampler:
|
|
return DistributedSampler(dataset, 1, 0)
|
|
|
|
@abstractmethod
|
|
def save_pretrained(self,
|
|
model: nn.Module,
|
|
path: str,
|
|
only_rank0: bool = True,
|
|
tokenizer: Optional[PreTrainedTokenizerBase] = None) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def get_model_state_dict_shard(self, model: nn.Module, **config):
|
|
pass |