mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-15 22:53:12 +00:00
* pass gpt trace and meta_prop * pass t5 trace and meta_prop * [FX] refactor experimental tracer and adapt it with hf models * pass all mainstream model zoo * fix CI * fix CI * fix CI * fix CI * fix CI * fix CI * fix CI * fix CI * skip tests * fix CI * using packaging version * polish
30 lines
1.1 KiB
Python
30 lines
1.1 KiB
Python
import torch
|
|
|
|
from .tracer import register_leaf_module, register_leaf_module_impl
|
|
|
|
try:
|
|
import apex
|
|
register_leaf_module(apex.normalization.FusedLayerNorm)
|
|
register_leaf_module(apex.normalization.FusedRMSNorm)
|
|
register_leaf_module(apex.normalization.MixedFusedLayerNorm)
|
|
register_leaf_module(apex.normalization.MixedFusedRMSNorm)
|
|
|
|
@register_leaf_module_impl(apex.normalization.FusedLayerNorm)
|
|
@register_leaf_module_impl(apex.normalization.FusedRMSNorm)
|
|
@register_leaf_module_impl(apex.normalization.MixedFusedLayerNorm)
|
|
@register_leaf_module_impl(apex.normalization.MixedFusedRMSNorm)
|
|
def torch_nn_normalize(self, input: torch.Tensor):
|
|
# check shape
|
|
if isinstance(self, torch.nn.BatchNorm1d):
|
|
assert input.dim() in [2, 3]
|
|
elif isinstance(self, torch.nn.BatchNorm2d):
|
|
assert input.dim() == 4
|
|
elif isinstance(self, torch.nn.BatchNorm3d):
|
|
assert input.dim() == 5
|
|
|
|
# normalization maintain the same shape as the input
|
|
return input.clone()
|
|
|
|
except (ImportError, AttributeError):
|
|
pass
|