ColossalAI/colossalai/fx/profiler/experimental/profiler_function/linear.py
Super Daniel 4f59693207
[fx] provide a stable but not accurate enough version of profiler. (#1547)
* [fx] compute memory stat and flop count for MetaInfoProp.

* [fx] modify node attribute.

* [fx] modify ckpt_chen.

* [fx] fix compatibility.

* [fx] fix import error.

* [fx] skip test for MetaInfoProp.

* [fx] skip test for MetaInfoProp.

* [fx] skip test for MetaInfoProp.

* [fx] skip test for MetaInfoProp.

* [fx] skip if torch 1.11.0.

* [fx] recover MetaInfoProp support for PyTorch 1.11.

* [fx] provide a stable but not accurate enough version of profiler.

* [fx] provide a stable but not accurate enough version of profiler.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix compatibility in tests.

* [fx] fix import error.
2022-09-07 11:21:04 +08:00

14 lines
436 B
Python

from typing import Tuple
import torch
from ..registry import meta_profiler_function
@meta_profiler_function.register(torch.nn.functional.linear)
def torch_nn_linear(input: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor = None) -> Tuple[int, int]:
out_features = weight.shape[0]
macs = torch.numel(input) * out_features
flops = 2 * macs
if bias is not None:
flops += bias.numel()
return flops, macs