mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-25 19:21:17 +00:00
* [fx] compute memory stat and flop count for MetaInfoProp. * [fx] modify node attribute. * [fx] modify ckpt_chen. * [fx] fix compatibility. * [fx] fix import error. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip if torch 1.11.0. * [fx] recover MetaInfoProp support for PyTorch 1.11. * [fx] provide a stable but not accurate enough version of profiler. * [fx] provide a stable but not accurate enough version of profiler. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix import error.
23 lines
1.2 KiB
Python
23 lines
1.2 KiB
Python
from typing import Tuple, Union
|
|
import torch
|
|
from ..registry import meta_profiler_function
|
|
|
|
|
|
@meta_profiler_function.register(torch.nn.functional.avg_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.avg_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.avg_pool3d)
|
|
@meta_profiler_function.register(torch.nn.functional.max_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.max_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.max_pool3d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_avg_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_avg_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_avg_pool3d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_max_pool1d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_max_pool2d)
|
|
@meta_profiler_function.register(torch.nn.functional.adaptive_max_pool3d)
|
|
def torch_nn_func_pooling(input: torch.Tensor, *args, **kwargs) -> Tuple[int, int]:
|
|
# all pooling could be considered as going over each input element only once (https://stackoverflow.com/a/67301217)
|
|
flops = input.numel()
|
|
macs = 0
|
|
return flops, macs
|