mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 02:26:51 +00:00
* [fx] compute memory stat and flop count for MetaInfoProp. * [fx] modify node attribute. * [fx] modify ckpt_chen. * [fx] fix compatibility. * [fx] fix import error. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip test for MetaInfoProp. * [fx] skip if torch 1.11.0. * [fx] recover MetaInfoProp support for PyTorch 1.11. * [fx] provide a stable but not accurate enough version of profiler. * [fx] provide a stable but not accurate enough version of profiler. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix compatibility in tests. * [fx] fix import error.
34 lines
1.0 KiB
Python
34 lines
1.0 KiB
Python
from typing import Tuple
|
|
import torch
|
|
from ..registry import meta_profiler_module
|
|
|
|
# TODO: different activation has different FLOPs count, currently unused.
|
|
_multiplier = {
|
|
torch.nn.ReLU: 1,
|
|
torch.nn.PReLU: 4,
|
|
torch.nn.Sigmoid: 4,
|
|
torch.nn.Tanh: 5,
|
|
torch.nn.LeakyReLU: 3,
|
|
torch.nn.ELU: 4,
|
|
torch.nn.ReLU6: 2,
|
|
torch.nn.GELU: 9,
|
|
torch.nn.Hardswish: 5,
|
|
torch.nn.Hardsigmoid: 4,
|
|
}
|
|
|
|
|
|
@meta_profiler_module.register(torch.nn.ELU)
|
|
@meta_profiler_module.register(torch.nn.LeakyReLU)
|
|
@meta_profiler_module.register(torch.nn.ReLU)
|
|
@meta_profiler_module.register(torch.nn.GELU)
|
|
@meta_profiler_module.register(torch.nn.Sigmoid)
|
|
@meta_profiler_module.register(torch.nn.Tanh)
|
|
@meta_profiler_module.register(torch.nn.ReLU6)
|
|
@meta_profiler_module.register(torch.nn.PReLU)
|
|
@meta_profiler_module.register(torch.nn.Hardswish)
|
|
@meta_profiler_module.register(torch.nn.Hardsigmoid)
|
|
def torch_nn_non_linear_act(self: torch.nn.Module, input: torch.Tensor) -> Tuple[int, int]:
|
|
flops = input.numel()
|
|
macs = 0
|
|
return flops, macs
|