mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 12:01:39 +00:00
50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
import torch
|
|
|
|
from .reward_utils import extract_solution, validate_response_structure
|
|
|
|
|
|
def math_reward_fn(input_ids, gt_answer, response_idx, **kwargs):
|
|
tokenizer = kwargs["tokenizer"]
|
|
reward = torch.tensor(0.0).to(input_ids.device)
|
|
s, e = response_idx[0], response_idx[1]
|
|
if gt_answer is None:
|
|
return reward
|
|
|
|
decoded_final_answer = tokenizer.decode(input_ids[s : e + 1], skip_special_tokens=True)
|
|
gt_answer = tokenizer.decode(gt_answer.squeeze(0), skip_special_tokens=True)
|
|
final_answer, processed_str = extract_solution(decoded_final_answer)
|
|
|
|
format_valid = validate_response_structure(processed_str, kwargs["tags"])
|
|
if not format_valid:
|
|
return reward
|
|
else:
|
|
reward += 1.0
|
|
# if gt_answer.strip().replace(" ", "").lower() == final_answer.strip().replace(" ", "").lower():
|
|
# reward = reward + 2.0
|
|
return reward
|
|
|
|
|
|
def gsm8k_reward_fn(input_ids, **kwargs):
|
|
gt_answer = kwargs["gt_answer"]
|
|
tokenizer = kwargs["tokenizer"]
|
|
s, e = kwargs["response_start"], kwargs["response_end"]
|
|
reward = torch.tensor(0.0).to(input_ids.device)
|
|
if gt_answer is None:
|
|
return reward
|
|
decoded_final_answer = tokenizer.decode(input_ids[s : e + 1], skip_special_tokens=True)
|
|
final_answer, processed_str = extract_solution(decoded_final_answer)
|
|
is_valid = True
|
|
try:
|
|
int(final_answer.strip())
|
|
except Exception:
|
|
is_valid = False
|
|
|
|
format_valid = validate_response_structure(processed_str, kwargs["tags"])
|
|
if not is_valid or not format_valid:
|
|
return reward
|
|
else:
|
|
reward += 1.0
|
|
if gt_answer.strip().replace(" ", "").lower() == final_answer.strip().replace(" ", "").lower():
|
|
reward = reward + 9.0
|
|
return reward
|