ColossalAI/applications/ColossalChat/tests/test_lora.py
YeAnbang df5e9c53cf
[ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all

* fix and tested ppo

* 2 nd round refactor

* add ci tests

* fix ci

* fix ci

* fix readme, style

* fix readme style

* fix style, fix benchmark

* reproduce benchmark result, remove useless files

* rename to ColossalChat

* use new image

* fix ci workflow

* fix ci

* use local model/tokenizer for ci tests

* fix ci

* fix ci

* fix ci

* fix ci timeout

* fix rm progress bar. fix ci timeout

* fix ci

* fix ci typo

* remove 3d plugin from ci temporary

* test environment

* cannot save optimizer

* support chat template

* fix readme

* fix path

* test ci locally

* restore build_or_pr

* fix ci data path

* fix benchmark

* fix ci, move ci tests to 3080, disable fast tokenizer

* move ci to 85

* support flash attention 2

* add all-in-one data preparation script. Fix colossal-llama2-chat chat template

* add hardware requirements

* move ci test data

* fix save_model, add unwrap

* fix missing bos

* fix missing bos; support grad accumulation with gemini

* fix ci

* fix ci

* fix ci

* fix llama2 chat template config

* debug sft

* debug sft

* fix colossalai version requirement

* fix ci

* add sanity check to prevent NaN loss

* fix requirements

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* update readme

* update readme

* update readme and ignore

* fix logger bug

* support parallel_output

* modify data preparation logic

* fix tokenization

* update lr

* fix inference

* run pre-commit

---------

Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 14:12:29 +08:00

70 lines
2.0 KiB
Python
Executable File

import torch
import torch.nn as nn
import torch.optim as optim
from coati.models import convert_to_lora_module
from torch.utils.data import DataLoader, TensorDataset
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
def test_overfit():
input_size = 1000
hidden_size = 200
num_classes = 5
batch_size = 64
learning_rate = 0.01
num_epochs = 200
# Synthesized dataset
X = torch.randn(batch_size, input_size)
Y = torch.randint(0, num_classes, (batch_size,))
# Convert to DataLoader
dataset = TensorDataset(X, Y)
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Build and convert model
model = SimpleNN(input_size, hidden_size, num_classes)
weight_to_compare = model.fc1.weight.detach().clone()
model = convert_to_lora_module(model, lora_rank=30)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
for _ in range(num_epochs):
for i, (inputs, labels) in enumerate(loader):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
print(loss)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Check if model has overfitted
outputs = model(X)
_, predicted = torch.max(outputs.data, 1)
total = labels.size(0)
correct = (predicted == Y).sum().item()
assert (correct / total > 0.95, "The model has not overfitted to the synthesized dataset")
assert (weight_to_compare - model.fc1.weight).sum() < 0.01
if __name__ == "__main__":
test_overfit()