mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-21 21:22:04 +00:00
* Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
70 lines
2.0 KiB
Python
Executable File
70 lines
2.0 KiB
Python
Executable File
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from coati.models import convert_to_lora_module
|
|
from torch.utils.data import DataLoader, TensorDataset
|
|
|
|
|
|
class SimpleNN(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_classes):
|
|
super(SimpleNN, self).__init__()
|
|
self.fc1 = nn.Linear(input_size, hidden_size)
|
|
self.relu = nn.ReLU()
|
|
self.fc2 = nn.Linear(hidden_size, num_classes)
|
|
|
|
def forward(self, x):
|
|
out = self.fc1(x)
|
|
out = self.relu(out)
|
|
out = self.fc2(out)
|
|
return out
|
|
|
|
|
|
def test_overfit():
|
|
input_size = 1000
|
|
hidden_size = 200
|
|
num_classes = 5
|
|
batch_size = 64
|
|
learning_rate = 0.01
|
|
num_epochs = 200
|
|
|
|
# Synthesized dataset
|
|
X = torch.randn(batch_size, input_size)
|
|
Y = torch.randint(0, num_classes, (batch_size,))
|
|
|
|
# Convert to DataLoader
|
|
dataset = TensorDataset(X, Y)
|
|
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
|
|
|
# Build and convert model
|
|
model = SimpleNN(input_size, hidden_size, num_classes)
|
|
weight_to_compare = model.fc1.weight.detach().clone()
|
|
model = convert_to_lora_module(model, lora_rank=30)
|
|
|
|
# Loss and optimizer
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
|
|
# Train the model
|
|
for _ in range(num_epochs):
|
|
for i, (inputs, labels) in enumerate(loader):
|
|
# Forward pass
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, labels)
|
|
print(loss)
|
|
# Backward and optimize
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
# Check if model has overfitted
|
|
outputs = model(X)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total = labels.size(0)
|
|
correct = (predicted == Y).sum().item()
|
|
assert (correct / total > 0.95, "The model has not overfitted to the synthesized dataset")
|
|
assert (weight_to_compare - model.fc1.weight).sum() < 0.01
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_overfit()
|