mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-21 05:04:47 +00:00
* Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
91 lines
2.9 KiB
Python
Executable File
91 lines
2.9 KiB
Python
Executable File
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from coati.models import Critic, RewardModel
|
|
from transformers import PreTrainedModel
|
|
|
|
|
|
@dataclass
|
|
class Experience:
|
|
"""Experience is a batch of data.
|
|
These data should have the sequence length and number of actions.
|
|
Left padding for sequences is applied.
|
|
|
|
Shapes of each tensor:
|
|
sequences: (B, S)
|
|
action_log_probs: (B, A)
|
|
values: (B)
|
|
reward: (B)
|
|
advantages: (B)
|
|
attention_mask: (B, S)
|
|
action_mask: (B, A)
|
|
|
|
"A" is the number of actions.
|
|
"""
|
|
|
|
sequences: torch.Tensor
|
|
action_log_probs: torch.Tensor
|
|
values: torch.Tensor
|
|
reward: torch.Tensor
|
|
kl: torch.Tensor
|
|
advantages: torch.Tensor
|
|
attention_mask: Optional[torch.LongTensor]
|
|
action_mask: Optional[torch.BoolTensor]
|
|
|
|
@torch.no_grad()
|
|
def to_device(self, device: torch.device) -> None:
|
|
self.sequences = self.sequences.to(device)
|
|
self.action_log_probs = self.action_log_probs.to(device)
|
|
self.values = self.values.to(device)
|
|
self.reward = self.reward.to(device)
|
|
self.advantages = self.advantages.to(device)
|
|
self.kl = self.kl.to(device)
|
|
if self.attention_mask is not None:
|
|
self.attention_mask = self.attention_mask.to(device)
|
|
if self.action_mask is not None:
|
|
self.action_mask = self.action_mask.to(device)
|
|
|
|
def pin_memory(self):
|
|
self.sequences = self.sequences.pin_memory()
|
|
self.action_log_probs = self.action_log_probs.pin_memory()
|
|
self.values = self.values.pin_memory()
|
|
self.reward = self.reward.pin_memory()
|
|
self.advantages = self.advantages.pin_memory()
|
|
self.kl = self.kl.pin_memory()
|
|
if self.attention_mask is not None:
|
|
self.attention_mask = self.attention_mask.pin_memory()
|
|
if self.action_mask is not None:
|
|
self.action_mask = self.action_mask.pin_memory()
|
|
return self
|
|
|
|
|
|
class ExperienceMaker(ABC):
|
|
"""
|
|
Base class for experience makers.
|
|
"""
|
|
|
|
def __init__(
|
|
self, actor: PreTrainedModel, critic: Critic, reward_model: RewardModel, initial_model: PreTrainedModel
|
|
) -> None:
|
|
super().__init__()
|
|
self.actor = actor
|
|
self.critic = critic
|
|
self.reward_model = reward_model
|
|
self.initial_model = initial_model
|
|
|
|
@abstractmethod
|
|
def make_experience(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **generate_kwargs) -> Experience:
|
|
"""
|
|
Abstract method to generate an experience.
|
|
|
|
Args:
|
|
input_ids (torch.Tensor): The input tensor.
|
|
attention_mask (torch.Tensor): The attention mask tensor.
|
|
**generate_kwargs: Additional keyword arguments for generating the experience.
|
|
|
|
Returns:
|
|
Experience: The generated experience.
|
|
"""
|