ColossalAI/applications/ColossalChat/coati/ray/detached_trainer_ppo.py
YeAnbang df5e9c53cf
[ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all

* fix and tested ppo

* 2 nd round refactor

* add ci tests

* fix ci

* fix ci

* fix readme, style

* fix readme style

* fix style, fix benchmark

* reproduce benchmark result, remove useless files

* rename to ColossalChat

* use new image

* fix ci workflow

* fix ci

* use local model/tokenizer for ci tests

* fix ci

* fix ci

* fix ci

* fix ci timeout

* fix rm progress bar. fix ci timeout

* fix ci

* fix ci typo

* remove 3d plugin from ci temporary

* test environment

* cannot save optimizer

* support chat template

* fix readme

* fix path

* test ci locally

* restore build_or_pr

* fix ci data path

* fix benchmark

* fix ci, move ci tests to 3080, disable fast tokenizer

* move ci to 85

* support flash attention 2

* add all-in-one data preparation script. Fix colossal-llama2-chat chat template

* add hardware requirements

* move ci test data

* fix save_model, add unwrap

* fix missing bos

* fix missing bos; support grad accumulation with gemini

* fix ci

* fix ci

* fix ci

* fix llama2 chat template config

* debug sft

* debug sft

* fix colossalai version requirement

* fix ci

* add sanity check to prevent NaN loss

* fix requirements

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* add dummy data generation script

* update readme

* update readme

* update readme and ignore

* fix logger bug

* support parallel_output

* modify data preparation logic

* fix tokenization

* update lr

* fix inference

* run pre-commit

---------

Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 14:12:29 +08:00

192 lines
8.5 KiB
Python
Executable File

from typing import Callable, Dict, List, Tuple
import ray
import torch
from coati.experience_maker import Experience
from coati.models.base import Actor, Critic
from coati.models.loss import PolicyLoss, ValueLoss
from coati.trainer.strategies import GeminiStrategy, LowLevelZeroStrategy, Strategy
from torch.optim import Adam
from colossalai.nn.optimizer import HybridAdam
from .callbacks import TrainerCallback, TrainerPerformanceEvaluator
from .detached_trainer_base import DetachedTrainer
from .lora_constructor import LoRAConstructor
from .utils import get_model_numel, get_rank, set_dist_env, state_dict_to
@ray.remote(
concurrency_groups={"buffer_length": 1, "buffer_append": 1, "buffer_sample": 1, "model_io": 1, "compute": 1}
)
class DetachedPPOTrainer(DetachedTrainer):
"""
Detached Trainer for PPO algorithm
Args:
strategy (Strategy): the strategy to use for training
model (str) : for actor / critic init
pretrained (str) : for actor / critic init
lora_rank (int) : for actor / critic init
train_batch_size (int, defaults to 8): the batch size to use for training
train_batch_size (int, defaults to 8): the batch size to use for training
buffer_limit (int, defaults to 0): the max_size limitation of replay buffer
buffer_cpu_offload (bool, defaults to True): whether to offload replay buffer to cpu
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
value_clip (float, defaults to 0.4): the clip coefficient of value loss
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
max_epochs (int, defaults to 1): the number of epochs of training process
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
callbacks (List[Callback], defaults to []): the callbacks to call during training process
generate_kwargs (dict, optional): the kwargs to use while model generating
"""
def __init__(
self,
experience_maker_holder_name_list: List[str],
strategy_fn: Callable[[], Strategy],
model_fn: Callable[[], Tuple[Actor, Critic]],
env_info: Dict[str, str] = None,
train_batch_size: int = 8,
buffer_limit: int = 0,
eps_clip: float = 0.2,
value_clip: float = 0.4,
dataloader_pin_memory: bool = True,
callbacks: List[TrainerCallback] = [],
eval_performance: bool = False,
debug: bool = False,
update_lora_weights: bool = False,
) -> None:
# set environment variables
if env_info:
set_dist_env(env_info=env_info)
# configure strategy
self.strategy = strategy_fn()
# configure models, loss and optimizers
with self.strategy.model_init_context():
self.actor, self.critic = model_fn()
if eval_performance:
actor_numel = get_model_numel(self.actor)
critic_numel = get_model_numel(self.critic)
evaluator = TrainerPerformanceEvaluator(actor_numel, critic_numel)
callbacks = callbacks + [evaluator]
if isinstance(self.strategy, (LowLevelZeroStrategy, GeminiStrategy)):
self.actor_optim = HybridAdam(self.actor.parameters(), lr=1e-7)
self.critic_optim = HybridAdam(self.critic.parameters(), lr=1e-7)
else:
self.actor_optim = Adam(self.actor.parameters(), lr=1e-7)
self.critic_optim = Adam(self.critic.parameters(), lr=1e-7)
(self.actor, self.actor_optim), (self.critic, self.critic_optim) = self.strategy.prepare(
(self.actor, self.actor_optim), (self.critic, self.critic_optim)
)
# configure trainer
self.actor_loss_fn = PolicyLoss(eps_clip)
self.critic_loss_fn = ValueLoss(value_clip)
super().__init__(
experience_maker_holder_name_list,
train_batch_size=train_batch_size,
buffer_limit=buffer_limit,
dataloader_pin_memory=dataloader_pin_memory,
callbacks=callbacks,
debug=debug,
)
if self._debug:
print(f"[trainer{get_rank()}] will send state dict to {experience_maker_holder_name_list}")
self._update_lora_weights = update_lora_weights
@ray.method(concurrency_group="model_io")
@torch.no_grad()
def _update_remote_makers(self, fully_update: bool = False, **config):
# TODO: balance duties
if not fully_update:
config["requires_grad_only"] = True
self.update_target_holder_list()
# mark start, ensure order
tasks = []
for target_holder in self.target_holder_list:
tasks.append(target_holder.update_experience_maker.remote(chunk_start=True, fully_update=fully_update))
ray.get(tasks)
# sending loop
tasks = []
for state_dict_shard in self._get_model_state_dict_shard(self.actor, fully_update=fully_update, **config):
for target_holder in self.target_holder_list:
tasks.append(
target_holder.update_experience_maker.remote(
new_actor_state_dict=state_dict_shard,
new_actor_lora_config_dict=self._get_model_lora_config_dict(self.actor),
fully_update=fully_update,
)
)
# sending loop
for state_dict_shard in self._get_model_state_dict_shard(self.critic, fully_update=fully_update, **config):
for target_holder in self.target_holder_list:
tasks.append(
target_holder.update_experience_maker.remote(
new_critic_state_dict=state_dict_shard,
new_critic_lora_config_dict=self._get_model_lora_config_dict(self.critic),
fully_update=fully_update,
)
)
ray.get(tasks)
# mark end
for target_holder in self.target_holder_list:
target_holder.update_experience_maker.remote(chunk_end=True, fully_update=fully_update)
@ray.method(concurrency_group="compute")
def training_step(self, experience: Experience) -> Dict[str, float]:
self.actor.train()
self.critic.train()
num_actions = experience.action_mask.size(1)
action_log_probs = self.actor(experience.sequences, num_actions, attention_mask=experience.attention_mask)
actor_loss = self.actor_loss_fn(
action_log_probs, experience.action_log_probs, experience.advantages, action_mask=experience.action_mask
)
self.strategy.backward(actor_loss, self.actor, self.actor_optim)
self.strategy.optimizer_step(self.actor_optim)
self.actor_optim.zero_grad()
values = self.critic(
experience.sequences, action_mask=experience.action_mask, attention_mask=experience.attention_mask
)
critic_loss = self.critic_loss_fn(
values, experience.values, experience.reward, action_mask=experience.action_mask
)
self.strategy.backward(critic_loss, self.critic, self.critic_optim)
self.strategy.optimizer_step(self.critic_optim)
self.critic_optim.zero_grad()
return {"actor_loss": actor_loss.item(), "critic_loss": critic_loss.item()}
def strategy_save_actor(self, path: str, only_rank0: bool = False) -> None:
self.strategy.save_model(self.actor, path, only_rank0)
def strategy_save_critic(self, path: str, only_rank0: bool = False) -> None:
self.strategy.save_model(self.critic, path, only_rank0)
def strategy_save_actor_optim(self, path: str, only_rank0: bool = False) -> None:
self.strategy.save_optimizer(self.actor_optim, path, only_rank0)
def strategy_save_critic_optim(self, path: str, only_rank0: bool = False) -> None:
self.strategy.save_optimizer(self.critic_optim, path, only_rank0)
def _get_model_state_dict_shard(self, model: torch.nn.Module, fully_update=False, **config):
for state_dict in self.strategy.get_model_state_dict_shard(model, **config):
if not self._update_lora_weights or fully_update:
yield state_dict_to(state_dict)
else:
state_dict_lora, _ = LoRAConstructor.filter_state_dict_lora(state_dict)
yield state_dict_to(state_dict_lora)
def _get_model_lora_config_dict(self, model: torch.nn.Module):
if not self._update_lora_weights:
return None
unwrapped_model = self.strategy.unwrap_model(model)
return LoRAConstructor.extract_lora_config(unwrapped_model)