mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-17 23:46:52 +00:00
* [Inference]ADD Bench Chatglm2 script (#4963) * add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Pipeline inference] Combine kvcache with pipeline inference (#4938) * merge kvcache with pipeline inference and refactor the code structure * support ppsize > 2 * refactor pipeline code * do pre-commit * modify benchmark * fix bench mark * polish code * add docstring and update readme * refactor the code * fix some logic bug of ppinfer * polish readme * fix typo * skip infer test * updated c++17 compiler flags (#4983) * [Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commitfbf3c09e67
. * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention (#4965) * adding flash-decoding * clean * adding kernel * adding flash-decoding * add integration * add * adding kernel * adding kernel * adding triton 2.1.0 features for inference * update bloom triton kernel * remove useless vllm kernels * clean codes * fix * adding files * fix readme * update llama flash-decoding --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * fix ColossalEval (#4992) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [doc]Update doc for colossal-inference (#4989) * update doc * Update README.md --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [hotfix] Fix the bug where process groups were not being properly released. (#4940) * Fix the bug where process groups were not being properly released. * test * Revert "test" This reverts commit479900c139
. * [hotfix] fix the bug of repeatedly storing param group (#4951) * [doc] add supported feature diagram for hybrid parallel plugin (#4996) * [Pipeline Inference] Merge pp with tp (#4993) * refactor pipeline into new CaiInferEngine * updata llama modeling forward * merge tp with pp * update docstring * optimize test workflow and example * fix typo * add assert and todo * [release] update version (#4995) * [release] update version * [hotfix] fix ci * [moe] merge moe into main (#4978) * update moe module * support openmoe * [hotfix] fix grad accumulation plus clipping for gemini (#5002) * [hotfix] Add layer norm gradients all-reduce for sequence parallel (#4926) * [hotfix] Add layer norm gradients all-reduce for sequence parallel. (#4915) * Add layer norm gradients all-reduce for sequence parallel. * skip pipeline inference test * [hotfix] fixing polices of sequence parallel (#4922) * Add layer norm gradients all-reduce for sequence parallel. * fix parameter passing when calling get_autopolicy --------- Co-authored-by: littsk <1214689160@qq.com> * Hotfix/add grad all reduce for sequence parallel (#4927) * Add layer norm gradients all-reduce for sequence parallel. * fix parameter passing when calling get_autopolicy * fix bug using wrong variables --------- Co-authored-by: littsk <1214689160@qq.com> * fix policy initialization * fix bloom and chatglm policices * polish code of handling layernorm * fix moe module * polish code of class initializing --------- Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> * [format] applied code formatting on changed files in pull request 4926 (#5007) Co-authored-by: github-actions <github-actions@github.com> * [Inference] Fix bug in ChatGLM2 Tensor Parallelism (#5014) * fix bug * fix * fix multiquery * fix multiquery --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [misc] add code owners (#5024) * [moe] support optimizer checkpoint (#5015) * Refactor MoE Manager setup method * unshard optim ckpt * optim io * update transformer version * update requirements * update ckpt * update ckpt * update ckpt * fix engine * fix engine * Support mtbench (#5025) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [moe]: fix ep/tp tests, add hierarchical all2all (#4982) * fix: add warning for EP different behavior * fix: use shard_data in ep & tp model * to: add used_capacity * fix: fix router test * feat: add create_ep_node_group * feat: add create_ep_hierarchical_group fn * feat: add HierarchicalAllToAll * test: add hierarchical all2all test * fix: fix test errors * fix: simplify create_ep_hierarchical_group * fix: add hierarchical_alltoall arg * fix: fix environ typo * revert: revert process mesh order * to: add todo mark * fix: skip hierarchical_comm if torch < 1.13.1 * [shardformer] Fix serialization error with Tensor Parallel state saving (#5018) * Fix serialization error with Tensor Parallel state saving * Refactor state_dict CPU transfer using tree_map * [gemini] gemini support tensor parallelism. (#4942) * [colossalai]fix typo * [inference] Add smmoothquant for llama (#4904) * [inference] add int8 rotary embedding kernel for smoothquant (#4843) * [inference] add smoothquant llama attention (#4850) * add smoothquant llama attention * remove uselss code * remove useless code * fix import error * rename file name * [inference] add silu linear fusion for smoothquant llama mlp (#4853) * add silu linear * update skip condition * catch smoothquant cuda lib exception * prcocess exception for tests * [inference] add llama mlp for smoothquant (#4854) * add llama mlp for smoothquant * fix down out scale * remove duplicate lines * add llama mlp check * delete useless code * [inference] add smoothquant llama (#4861) * add smoothquant llama * fix attention accuracy * fix accuracy * add kv cache and save pretrained * refactor example * delete smooth * refactor code * [inference] add smooth function and delete useless code for smoothquant (#4895) * add smooth function and delete useless code * update datasets * remove duplicate import * delete useless file * refactor codes (#4902) * rafactor code * add license * add torch-int and smoothquant license * Update flash_attention_patch.py To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. https://github.com/huggingface/transformers/pull/25598 * [kernel] support pure fp16 for cpu adam and update gemini optim tests (#4921) * [kernel] support pure fp16 for cpu adam (#4896) * [kernel] fix cpu adam kernel for pure fp16 and update tests (#4919) * [kernel] fix cpu adam * [test] update gemini optim test * [format] applied code formatting on changed files in pull request 4908 (#4918) Co-authored-by: github-actions <github-actions@github.com> * [gemini] support gradient accumulation (#4869) * add test * fix no_sync bug in low level zero plugin * fix test * add argument for grad accum * add grad accum in backward hook for gemini * finish implementation, rewrite tests * fix test * skip stuck model in low level zero test * update doc * optimize communication & fix gradient checkpoint * modify doc * cleaning codes * update cpu adam fp16 case * [hotfix] fix torch 2.0 compatibility (#4936) * [hotfix] fix launch * [test] fix test gemini optim * [shardformer] fix vit * [test] add no master test for low level zero plugin (#4934) * [format] applied code formatting on changed files in pull request 4820 (#4886) Co-authored-by: github-actions <github-actions@github.com> * [nfc] fix some typo with colossalai/ docs/ etc. (#4920) * [Refactor] Integrated some lightllm kernels into token-attention (#4946) * add some req for inference * clean codes * add codes * add some lightllm deps * clean codes * hello * delete rms files * add some comments * add comments * add doc * add lightllm deps * add lightllm cahtglm2 kernels * add lightllm cahtglm2 kernels * replace rotary embedding with lightllm kernel * add some commnets * add some comments * add some comments * add * replace fwd kernel att1 * fix a arg * add * add * fix token attention * add some comments * clean codes * modify comments * fix readme * fix bug * fix bug --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [test] merge old components to test to model zoo (#4945) * [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test * [inference] add reference and fix some bugs (#4937) * add reference and fix some bugs * update gptq init --------- Co-authored-by: Xu Kai <xukai16@foxamil.com> * [Inference]ADD Bench Chatglm2 script (#4963) * add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Pipeline inference] Combine kvcache with pipeline inference (#4938) * merge kvcache with pipeline inference and refactor the code structure * support ppsize > 2 * refactor pipeline code * do pre-commit * modify benchmark * fix bench mark * polish code * add docstring and update readme * refactor the code * fix some logic bug of ppinfer * polish readme * fix typo * skip infer test * updated c++17 compiler flags (#4983) * [Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commitfbf3c09e67
. * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention (#4965) * adding flash-decoding * clean * adding kernel * adding flash-decoding * add integration * add * adding kernel * adding kernel * adding triton 2.1.0 features for inference * update bloom triton kernel * remove useless vllm kernels * clean codes * fix * adding files * fix readme * update llama flash-decoding --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * fix ColossalEval (#4992) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [doc]Update doc for colossal-inference (#4989) * update doc * Update README.md --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [hotfix] Fix the bug where process groups were not being properly released. (#4940) * Fix the bug where process groups were not being properly released. * test * Revert "test" This reverts commit479900c139
. * [hotfix] fix the bug of repeatedly storing param group (#4951) * [doc] add supported feature diagram for hybrid parallel plugin (#4996) * [Pipeline Inference] Merge pp with tp (#4993) * refactor pipeline into new CaiInferEngine * updata llama modeling forward * merge tp with pp * update docstring * optimize test workflow and example * fix typo * add assert and todo * [release] update version (#4995) * [release] update version * [hotfix] fix ci * [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp * fix fix fix * update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO * support fused layernorm support fused layernorm support fused layernorm * update fusedlayernorm update fusedlayernorm update fusedlayernorm * add sequence parallel to gemini add sequence parallel to gemini * fix * fix comments fix comments fix comments * fix * fix t5 * clear cache * fix * activate ci * activate ci * fix * fix * fix * fix * revert * modify tp gather method modify tp gather method modify tp gather method modify tp gather method * fix test --------- Co-authored-by: Xu Kai <xukai16@foxmail.com> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Baizhou Zhang <eddiezhang@pku.edu.cn> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: cuiqing.li <lixx336@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> Co-authored-by: Xu Kai <xukai16@foxamil.com> Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com> Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: littsk <1214689160@qq.com> Co-authored-by: ppt0011 <143150326+ppt0011@users.noreply.github.com> * [hotfix] Suport extra_kwargs in ShardConfig (#5031) * [refactor]: replace inference args with extra_kwargs in ShardConfig * modify shardconfig * polish code * fix policy bug in llama * fix bug in auto policy * remove setattr in ShardConfig * fix wrong EOS token in ColossalChat * [Kernels]Update triton kernels into 2.1.0 (#5046) * update flash-context-attention * adding kernels * fix * reset * add build script * add building process * add llama2 exmaple * add colossal-llama2 test * clean * fall back test setting * fix test file * clean * clean * clean --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [pipeline,shardformer] Fix p2p efficiency in pipeline, allow skipping loading weight not in weight_map when `strict=False`, fix llama flash attention forward, add flop estimation by megatron in llama benchmark (#5017) * Use p2p * Cannot bidirectonal send p2p * Refactor tensor creation and serialization in P2P communication * Fix llama forward args in flash attention * Add flop estimate from megatron * Support loading weight not in weight_map when strict=False in hybrid_parallel * Use send_forward_recv_backward, etc in 1f1b * Use dataclass for metdata Remove torch.cuda.synchronize() as suggested * Add comment about the torch.cuda.synchronize for potential error * Typo * Update hybrid_parallel_checkpoint_io.py * Update p2p.py * Update one_f_one_b.py * Update p2p.py --------- Co-authored-by: flybird11111 <1829166702@qq.com> * [gemini] gemini support extra-dp (#5043) * support ddp * fix * fix * fix fix * support ddp * fix * fix * fix fix * simplify tests * fix * fix * fix fix fix * fix * [shardformer] fix llama error when transformers upgraded. (#5055) * fix-llama * Update llama.py * [hotfix]: modify create_ep_hierarchical_group and add test (#5032) * feat: modify create_ep_hierarchical_group args * test: add ep tests * fix: remove get_process_group_ranks * fix: fix src_rank * [exampe] fix llama example' loss error when using gemini plugin (#5060) fix llama example * [inference] Refactor inference architecture (#5057) * [inference] support only TP (#4998) * support only tp * enable tp * add support for bloom (#5008) * [refactor] refactor gptq and smoothquant llama (#5012) * refactor gptq and smoothquant llama * fix import error * fix linear import torch-int * fix smoothquant llama import error * fix import accelerate error * fix bug * fix import smooth cuda * fix smoothcuda * [Inference Refactor] Merge chatglm2 with pp and tp (#5023) merge chatglm with pp and tp * [Refactor] remove useless inference code (#5022) * remove useless code * fix quant model * fix test import bug * mv original inference legacy * fix chatglm2 * [Refactor] refactor policy search and quant type controlling in inference (#5035) * [Refactor] refactor policy search and quant type controling in inference * [inference] update readme (#5051) * update readme * update readme * fix architecture * fix table * fix table * [inference] udpate example (#5053) * udpate example * fix run.sh * fix rebase bug * fix some errors * update readme * add some features * update interface * update readme * update benchmark * add requirements-infer --------- Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> * [Kernels]added flash-decoidng of triton (#5063) * added flash-decoidng of triton based on lightllm kernel * add req * clean * clean * delete build.sh --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [misc] remove outdated submodule (#5070) * [npu] add npu support for gemini and zero (#5067) * [npu] setup device utils (#5047) * [npu] add npu device support * [npu] support low level zero * [test] update npu zero plugin test * [hotfix] fix import * [test] recover tests * [npu] gemini support npu (#5052) * [npu] refactor device utils * [gemini] support npu * [example] llama2+gemini support npu * [kernel] add arm cpu adam kernel (#5065) * [kernel] add arm cpu adam * [optim] update adam optimizer * [kernel] arm cpu adam remove bf16 support * [hotfix/hybridengine] fix bug when tp*pp size = 1 (#5069) * [inference] update examples and engine (#5073) * update examples and engine * fix choices * update example * [format] applied code formatting on changed files in pull request 5067 (#5072) Co-authored-by: github-actions <github-actions@github.com> * [hotfix/hybridengine] Fix init model with random parameters in benchmark (#5074) * fix init model with random parameters * fix example * [inference] refactor examples and fix schedule (#5077) * [setup] refactor infer setup * [hotfix] fix infenrece behavior on 1 1 gpu * [exmaple] refactor inference examples * fix thrust-transform-reduce error (#5078) * [nfc] fix typo in docs/ (#4972) * [nfc] fix typo and author name (#5089) * [gemini]fix gemini optimzer, saving Shardformer in Gemini got list assignment index out of range (#5085) * [Hotfix] Fix model policy matching strategy in ShardFormer (#5064) * hotfix/Fix get model policy strategy in ShardFormer * fix bug in auto policy * [shardformer]fix flash attention, when mask is casual, just don't unpad it (#5084) * fix flash attn * fix fix * [npu] add npu support for hybrid plugin and llama (#5090) * llama 3d * update * fix autocast * [Feature] Add document retrieval QA (#5020) * add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu> * remove duplicate import (#5100) * fix typo change lazy_iniy to lazy_init (#5099) * [nfc] fix typo change directoty to directory (#5111) * [FEATURE] Add Safety Eval Datasets to ColossalEval (#5095) * add safetybench and cvalues(responsibility) eval dataset * Modify code according to review suggestions --------- Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu> * [hotfix] fixed memory usage of shardformer module replacement (#5122) * [shardformer]: support gpt-j, falcon, Mistral and add interleaved pipeline for bert (#5088) * [shardformer] implement policy for all GPT-J models and test * [shardformer] support interleaved pipeline parallel for bert finetune * [shardformer] shardformer support falcon (#4883) * [shardformer]: fix interleaved pipeline for bert model (#5048) * [hotfix]: disable seq parallel for gptj and falcon, and polish code (#5093) * Add Mistral support for Shardformer (#5103) * [shardformer] add tests to mistral (#5105) --------- Co-authored-by: Pengtai Xu <henryxu880@gmail.com> Co-authored-by: ppt0011 <143150326+ppt0011@users.noreply.github.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: eric8607242 <e0928021388@gmail.com> * [doc] add moe news (#5128) * [doc] add moe news * [doc] add moe news * [doc] add moe news * [doc] updated paper citation (#5131) * fix typo change JOSNL TO JSONL etc. (#5116) * [format] applied code formatting on changed files in pull request 5088 (#5127) Co-authored-by: github-actions <github-actions@github.com> * [format] applied code formatting on changed files in pull request 5124 (#5125) Co-authored-by: github-actions <github-actions@github.com> * [format] applied code formatting on changed files in pull request 5115 (#5118) Co-authored-by: github-actions <github-actions@github.com> * [accelerator] init the accelerator module (#5129) * [accelerator] init the accelerator module * polish code * polish code * polish code * polish code * [npu] support triangle attention for llama (#5130) * update fused attn * update spda * tri attn * update triangle * import * fix * fix * [plugin]fix 3d checkpoint load when booster boost without optimizer. (#5135) * fix 3d checkpoint load when booster boost without optimizer fix 3d checkpoint load when booster boost without optimizer * test ci * revert ci * fix fix * [ColossalQA] refactor server and webui & add new feature (#5138) * refactor server and webui & add new feature * add requirements * modify readme and ui * [doc] fix colossalqa document (#5146) * fix doc * modify doc * fix (#5158) fix * [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> * [gemini] hotfix NaN loss while using Gemini + tensor_parallel (#5150) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * [colossalqa] fix pangu api (#5170) * fix pangu api * add comment * [ColossalEval] Support GSM, Data Leakage Evaluation and Tensor Parallel (#5169) * Support GSM, Data Leakage Evaluation and Tensor Parallel * remove redundant code and update inference.py in examples/gpt_evaluation --------- Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [shardformer] llama support DistCrossEntropy (#5176) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * fix ci * fix ci --------- Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> * Fix ColossalEval (#5186) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [doc] update pytorch version in documents. (#5177) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * update pytorch version in documents * polish readme in application/chat (#5194) * [pipeline]: fix p2p comm, add metadata cache and support llama interleaved pp (#5134) * test: add more p2p tests * fix: remove send_forward_recv_forward as p2p op list need to use the same group * fix: make send and receive atomic * feat: update P2PComm fn * feat: add metadata cache in 1f1b * feat: add metadata cache in interleaved pp * feat: modify is_xx_stage fn * revert: add _broadcast_object_list * feat: add interleaved pp in llama policy * feat: set NCCL_BUFFSIZE in HybridParallelPlugin * Improve logic for selecting metrics (#5196) Co-authored-by: Xu <yuanchen.xu00@gmail.com> * [doc] Update required third-party library list for testing and torch comptibility checking (#5207) * doc/update requirements-test.txt * update torch-cuda compatibility check * support linear accumulation fusion (#5199) support linear accumulation fusion support linear accumulation fusion fix * [pipeline]: support arbitrary batch size in forward_only mode (#5201) * fix: remove drop last in val & test dataloader * feat: add run_forward_only, support arbitrary bs * chore: modify ci script * [pipeline]: add p2p fallback order and fix interleaved pp deadlock (#5214) * fix: add fallback order option and update 1f1b * fix: fix deadlock comm in interleaved pp * test: modify p2p test * [devops] update torch versoin in ci (#5217) * fix-test (#5210) fix-test fix-test * fix flash attn (#5209) * [nfc] fix typo colossalai/shardformer/ (#5133) * [Colossal-LLaMA-2] Release Colossal-LLaMA-2-13b-base model (#5224) * update readme * update readme * update link * update * update readme * update * update * update * update title * update example * update example * fix content * add conclusion * add license * update * update * update version * fix minor * [doc] Update README.md of Colossal-LLAMA2 (#5233) * Update README.md * Update README.md * [doc] Make leaderboard format more uniform and good-looking (#5231) * Make leaderboard format more unifeid and good-looking * Update README.md * Update README.md * [doc] add Colossal-LLaMA-2-13B (#5234) * [doc] add Colossal-LLaMA-2-13B * [doc] add Colossal-LLaMA-2-13B * [doc] add Colossal-LLaMA-2-13B * [format] applied code formatting on changed files in pull request 5234 (#5235) Co-authored-by: github-actions <github-actions@github.com> * [doc] SwiftInfer release (#5236) * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [npu] use extension for op builder (#5172) * update extension * update cpu adam * update is * add doc for cpu adam * update kernel * update commit * update flash * update memory efficient * update flash attn * update flash attention loader * update api * fix * update doc * update example time limit * reverse change * fix doc * remove useless kernel * fix * not use warning * update * update * [pipeline] A more general _communicate in p2p (#5062) * A more general _communicate * feat: finish tree_flatten version p2p * fix: update p2p api calls --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [npu] change device to accelerator api (#5239) * update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com> * [hotfix] removed unused flag (#5242) * [doc] fix typo in Colossal-LLaMA-2/README.md (#5247) * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed ddp test (#5254) * [ci] fixed ddp test * polish * fix typo in applications/ColossalEval/README.md (#5250) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [doc] fix doc typo (#5256) * [doc] fix annotation display * [doc] fix llama2 doc * [hotfix]: add pp sanity check and fix mbs arg (#5268) * fix: fix misleading mbs arg * feat: add pp sanity check * fix: fix 1f1b sanity check * [workflow] fixed incomplete bash command (#5272) * [workflow] fixed oom tests (#5275) * [workflow] fixed oom tests * polish * polish * polish * [ci] fix test_hybrid_parallel_plugin_checkpoint_io.py (#5276) * fix ci fix * fix test * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests * fix --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [shardformer] hybridparallelplugin support gradients accumulation. (#5246) * support gradients acc fix fix fix fix fix fix fix fix fix fix fix fix fix * fix fix * fix fix fix * [hotfix] Fix ShardFormer test execution path when using sequence parallelism (#5230) * fix auto loading gpt2 tokenizer (#5279) * [doc] add llama2-13B disyplay (#5285) * Update README.md * fix 13b typo --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> * fix llama pretrain (#5287) * [hotfix] fix 3d plugin test (#5292) * fix bug for mefture (#5299) * [NFC] polish applications/Colossal-LLaMA-2/colossal_llama2/tokenizer/init_tokenizer.py code style (#5228) * fix some typo (#5307) * [feat] refactored extension module (#5298) * [feat] refactored extension module * polish * polish * polish * polish * polish * polish * polish * polish * polish * polish * [workflow] updated CI image (#5318) * [accelerator] fixed npu api * [tests] fix t5 test. (#5322) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * fix t5 test --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [doc] added docs for extensions (#5324) * [doc] added docs for extensions * polish * polish * fix typo under extensions/ (#5330) * fix typo change dosen't to doesn't (#5308) * [extension] fixed exception catch (#5342) * [Chat] fix sft loss nan (#5345) * fix script * fix script * fix chat nan * fix chat nan * [checkpointio] fix gemini and hybrid parallel optim checkpoint (#5347) * [checkpointio] fix hybrid parallel optim checkpoint * [extension] fix cuda extension * [checkpointio] fix gemini optimizer checkpoint * polish code * [fix] remove unnecessary dp_size assert (#5351) * fix: remove unnecessary assert * test: add more 3d plugin tests * fix: add warning * [gemini] fix param op hook when output is tuple (#5355) * [gemini] fix param op hook when output is tuple * [gemini] fix param op hook * [llama] fix dataloader for hybrid parallel (#5358) * [plugin] refactor prepare dataloader * [plugin] update train script * [llama] update training script (#5360) * [llama] update training script * [doc] polish docstr * [llama] add flash attn patch for npu (#5362) * [llama] fix neftune & pbar with start_step (#5364) * [eval] update llama npu eval (#5366) * [llama] polish training script and fix optim ckpt (#5368) * [lr-scheduler] fix load state dict and add test (#5369) * [llama] fix memory issue (#5371) * [llama] fix memory issue * [llama] add comment * [moe] init mixtral impl * [moe] update capacity computing (#5253) * [moe] top2 allow uneven input * [moe] update capacity computing * [moe] remove debug info * [moe] update capacity computing * [moe] update capacity computing * [moe] support mixtral (#5309) * [moe] add mixtral block for single expert * [moe] mixtral block fwd support uneven ep * [moe] mixtral block bwd support uneven ep * [moe] add mixtral moe layer * [moe] simplify replace * [meo] support save sharded mixtral * [meo] support load sharded mixtral * [meo] support save sharded optim * [meo] integrate moe manager into plug * [meo] fix optimizer load * [meo] fix mixtral layer * [moe] fix mixtral checkpoint io (#5314) * [moe] fix mixtral forward default value (#5329) * [moe] fix mixtral optim checkpoint (#5344) * [moe] fix tests * [release] update version (#5380) * [llama] fix training and inference scripts (#5384) * [llama] refactor inference example to fit sft * [llama] fix training script to fit gemini * [llama] fix inference script * [doc] Fix typo (#5361) * [doc] updated installation command (#5389) * [hotfix] fix variable type for top_p (#5313) Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [hotfix] Fix wrong import in meta_registry (#5392) * [extension] hotfix jit extension setup (#5402) * [example] reuse flash attn patch (#5400) * [fsdp] impl save/load shard model/optimizer (#5357) * [setup] fixed nightly release (#5388) * [shardformer]gather llama logits (#5398) * gather llama logits * fix * update requirements (#5407) * [workflow] added pypi channel (#5412) * [doc] fix blog link * [doc] fix blog link * fix sft single turn inference example (#5416) * [example]add gpt2 benchmark example script. (#5295) * benchmark gpt2 * fix fix fix fix * [doc] fix typo in Colossal-LLaMA-2/README.md (#5247) * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed ddp test (#5254) * [ci] fixed ddp test * polish * fix typo in applications/ColossalEval/README.md (#5250) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [doc] fix doc typo (#5256) * [doc] fix annotation display * [doc] fix llama2 doc * [hotfix]: add pp sanity check and fix mbs arg (#5268) * fix: fix misleading mbs arg * feat: add pp sanity check * fix: fix 1f1b sanity check * [workflow] fixed incomplete bash command (#5272) * [workflow] fixed oom tests (#5275) * [workflow] fixed oom tests * polish * polish * polish * [ci] fix test_hybrid_parallel_plugin_checkpoint_io.py (#5276) * fix ci fix * fix test * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests * fix --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [shardformer] hybridparallelplugin support gradients accumulation. (#5246) * support gradients acc fix fix fix fix fix fix fix fix fix fix fix fix fix * fix fix * fix fix fix * [hotfix] Fix ShardFormer test execution path when using sequence parallelism (#5230) * fix auto loading gpt2 tokenizer (#5279) * [doc] add llama2-13B disyplay (#5285) * Update README.md * fix 13b typo --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> * fix llama pretrain (#5287) * fix * fix * fix fix * fix fix fix * fix fix * benchmark gpt2 * fix fix fix fix * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * fix fix * fix fix fix * fix * fix fix fix fix fix * fix * Update shardformer.py --------- Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: Michelle <97082656+MichelleMa8@users.noreply.github.com> Co-authored-by: Desperado-Jia <502205863@qq.com> * [doc] sora release (#5425) * [doc] sora release * [doc] sora release * [doc] sora release * [doc] sora release * [devops] fix extention building (#5427) * [hotfix] fix sd vit import error (#5420) * fix import error * Update dpt_depth.py --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [hotfix] fix typo of openmoe model source (#5403) * [doc] update some translations with README-zh-Hans.md (#5382) * [hotfix] fix typo change _descrption to _description (#5331) * [hotfix] fix typo change enabel to enable under colossalai/shardformer/ (#5317) * [eval-hotfix] set few_shot_data to None when few shot is disabled (#5422) * [hotfix] fix typo change MoECheckpintIO to MoECheckpointIO (#5335) Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [doc] Fix typo s/infered/inferred/ (#5288) Signed-off-by: hugo-syn <hugo.vincent@synacktiv.com> * [hotfix] fix stable diffusion inference bug. (#5289) * Update train_ddp.yaml delete "strategy" to fix DDP config loading bug in "main.py" * Update train_ddp.yaml fix inference with scripts/txt2img.py config file load bug. * Update README.md add pretrain model test code. * [colossal-llama2] add stream chat examlple for chat version model (#5428) * add stream chat for chat version * remove os.system clear * modify function name * [release] update version (#5411) * fix tensor data update for gemini loss caluculation (#5442) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme * [release] grok-1 314b inference (#5490) * [release] grok-1 inference * [release] grok-1 inference * [release] grok-1 inference * [example] update Grok-1 inference (#5495) * revise grok-1 example * remove unused arg in scripts * prevent re-installing torch * update readme * revert modifying colossalai requirements * add perf * trivial * add tokenizer url * [hotfix] set return_outputs=False in examples and polish code (#5404) * fix: simplify merge_batch * fix: use return_outputs=False to eliminate extra memory consumption * feat: add return_outputs warning * style: remove `return_outputs=False` as it is the default value * [release] grok-1 inference benchmark (#5500) * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [shardformer]Fix lm parallel. (#5480) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * fix lm forward distribution * fix * test ci * fix * [fix] fix grok-1 example typo (#5506) * [devops] fix example test ci (#5504) * Fix ColoTensorSpec for py11 (#5440) * fixed layout converter caching and updated tester * Empty-Commit * [shardformer] update colo attention to support custom mask (#5510) * [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests * [format] applied code formatting on changed files in pull request 5510 (#5517) Co-authored-by: github-actions <github-actions@github.com> * [shardformer] fix pipeline forward error if custom layer distribution is used (#5189) * Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution * Change static methods for t5 layer distribution to member functions * Change static methods for whisper layer distribution to member functions * Replace whisper policy usage with self one * Fix test case to use non-static layer distribution methods * fix: fix typo --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [Fix] Grok-1 use tokenizer from the same pretrained path (#5532) * [fix] use tokenizer from the same pretrained path * trust remote code * [ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com> * [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508) * feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig` * feat: apply `GradientCheckpointConfig` to policy and llama_forward * feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager * fix: add optional args for `distribute_layer` and `get_stage_index` * fix: fix changed API calls * test: update llama tests * style: polish `GradientCheckpointConfig` * fix: fix pipeline utils tests * fix incorrect sharding without zero (#5545) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] Sequence Parallelism Optimization (#5533) * sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * [hotfix] quick fixes to make legacy tutorials runnable (#5559) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [fix] fix typo s/muiti-node /multi-node etc. (#5448) * [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548) * [devops] remove post commit ci (#5566) * [devops] remove post commit ci * [misc] run pre-commit on all files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [shardformer] refactor embedding resize (#5603) * [branch rebase] rebase main to Feature/resize_embedding (#5554) * fix * [release] update version (#5411) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [CI] run pre-commit (#5577) * fix * [release] update version (#5411) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme * run pre-commit --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [rebase] rebase main to resize-embedding (#5581) * [release] grok-1 314b inference (#5490) * [release] grok-1 inference * [release] grok-1 inference * [release] grok-1 inference * [example] update Grok-1 inference (#5495) * revise grok-1 example * remove unused arg in scripts * prevent re-installing torch * update readme * revert modifying colossalai requirements * add perf * trivial * add tokenizer url * [hotfix] set return_outputs=False in examples and polish code (#5404) * fix: simplify merge_batch * fix: use return_outputs=False to eliminate extra memory consumption * feat: add return_outputs warning * style: remove `return_outputs=False` as it is the default value * [release] grok-1 inference benchmark (#5500) * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [shardformer]Fix lm parallel. (#5480) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * fix lm forward distribution * fix * test ci * fix * [fix] fix grok-1 example typo (#5506) * [devops] fix example test ci (#5504) * Fix ColoTensorSpec for py11 (#5440) * fixed layout converter caching and updated tester * Empty-Commit * [shardformer] update colo attention to support custom mask (#5510) * [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests * [format] applied code formatting on changed files in pull request 5510 (#5517) Co-authored-by: github-actions <github-actions@github.com> * [shardformer] fix pipeline forward error if custom layer distribution is used (#5189) * Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution * Change static methods for t5 layer distribution to member functions * Change static methods for whisper layer distribution to member functions * Replace whisper policy usage with self one * Fix test case to use non-static layer distribution methods * fix: fix typo --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [Fix] Grok-1 use tokenizer from the same pretrained path (#5532) * [fix] use tokenizer from the same pretrained path * trust remote code * [ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com> * [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508) * feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig` * feat: apply `GradientCheckpointConfig` to policy and llama_forward * feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager * fix: add optional args for `distribute_layer` and `get_stage_index` * fix: fix changed API calls * test: update llama tests * style: polish `GradientCheckpointConfig` * fix: fix pipeline utils tests * fix incorrect sharding without zero (#5545) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] Sequence Parallelism Optimization (#5533) * sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * [hotfix] quick fixes to make legacy tutorials runnable (#5559) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [fix] fix typo s/muiti-node /multi-node etc. (#5448) * [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548) * [devops] remove post commit ci (#5566) * [devops] remove post commit ci * [misc] run pre-commit on all files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]enable padding vocabulary size. (#5489) * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * padding vocab * padding vocabe * fix * fix * fxi * test ci * fix fix fix fix * fix fix * fix * fix * Update hybrid_parallel_plugin.py fix fix fix * fix fix * fix fix * fix * resolve super init resolve super init resolve super init resolve super init * resolve comments * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * vocab checkpointio * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix fix fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * padding vocab * fix * fix fix * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * cherry-pick * revert moe modify * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix fix fix fix fix fix fix fix * resolve comments resolve comments resolve comments resolve comments resolve comments * ptensor ptensor resolve comments fix fix fix fix fix resolve comments resolve comments resolve comments resolve comments resolve comments --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix rebase * fix rebase --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [lora] add lora APIs for booster, support lora for TorchDDP (#4981) * add apis and peft requirement * add liscense and implement apis * add checkpointio apis * add torchddp fwd_bwd test * add support_lora methods * add checkpointio test and debug * delete unneeded codes * remove peft from LICENSE * add concrete methods for enable_lora * simplify enable_lora api * fix requirements * [LowLevelZero] low level zero support lora (#5153) * low level zero support lora low level zero support lora * add checkpoint test * add checkpoint test * fix * fix * fix * fix fix fix fix * fix * fix fix fix fix fix fix fix * fix * fix fix fix fix fix fix fix * fix * test ci * git # This is a combination of 3 commits. Update low_level_zero_plugin.py Update low_level_zero_plugin.py fix fix fix * fix naming fix naming fix naming fix * [feature] qlora support * qlora follow commit * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * migrate qutization folder to colossalai/ * minor fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * gptj sp fix * remove redundancies from pre-commit * minor fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Signed-off-by: hugo-syn <hugo.vincent@synacktiv.com> Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com> Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: cuiqing.li <lixx336@gmail.com> Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: littsk <1214689160@qq.com> Co-authored-by: Baizhou Zhang <eddiezhang@pku.edu.cn> Co-authored-by: ppt0011 <143150326+ppt0011@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Xuanlei Zhao <43881818+oahzxl@users.noreply.github.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: Jun Gao <imgaojun@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Xu Kai <xukai16@foxmail.com> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> Co-authored-by: Xu Kai <xukai16@foxamil.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Elsa Granger <zeyugao@outlook.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu> Co-authored-by: Pengtai Xu <henryxu880@gmail.com> Co-authored-by: eric8607242 <e0928021388@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Michelle <97082656+MichelleMa8@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: BlueRum <70618399+ht-zhou@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: JIMMY ZHAO <knightyzhao@gmail.com> Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: Desperado-Jia <502205863@qq.com> Co-authored-by: 李文军 <40464906+liwenjuna@users.noreply.github.com> Co-authored-by: yixiaoer <miyaku@yixiaoer.sg> Co-authored-by: CZYCW <czyczf@163.com> Co-authored-by: Stephan Kölker <stephankoe@users.noreply.github.com> Co-authored-by: QinLuo <eric.x.sun@gmail.com> Co-authored-by: MickeyCHAN <76671016+danyow-cheung@users.noreply.github.com> Co-authored-by: Luo Yihang <luo_yihang@outlook.com> Co-authored-by: Dongruixuan Li <dongruixuan@hotmail.com> Co-authored-by: hugo-syn <61210734+hugo-syn@users.noreply.github.com> Co-authored-by: Youngon <Youngon_wyl@163.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
946 lines
43 KiB
Python
946 lines
43 KiB
Python
import copy
|
|
import logging
|
|
import os
|
|
from functools import reduce
|
|
from pathlib import Path
|
|
from shutil import rmtree
|
|
from typing import Dict, Iterator, Optional, OrderedDict, Tuple
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed import ProcessGroup
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
|
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
|
from colossalai.tensor.padded_tensor import (
|
|
init_as_padded_tensor,
|
|
is_padded_tensor,
|
|
to_padded_tensor,
|
|
to_unpadded_tensor,
|
|
)
|
|
from colossalai.utils import get_current_device
|
|
|
|
from .general_checkpoint_io import GeneralCheckpointIO
|
|
from .index_file import CheckpointIndexFile
|
|
from .utils import (
|
|
StateDictSharder,
|
|
gather_distributed_param,
|
|
get_model_base_filenames,
|
|
get_optimizer_base_filenames,
|
|
is_safetensors_available,
|
|
load_shard_state_dict,
|
|
load_state_dict,
|
|
load_state_dict_into_model,
|
|
load_states_into_optimizer,
|
|
save_config_file,
|
|
save_param_groups,
|
|
save_state_dict,
|
|
save_state_dict_shards,
|
|
search_padding_dim,
|
|
search_tp_partition_dim,
|
|
sharded_optimizer_loading_epilogue,
|
|
)
|
|
|
|
try:
|
|
from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX
|
|
except ImportError:
|
|
_EXTRA_STATE_KEY_SUFFIX = "_extra_state"
|
|
|
|
|
|
class HybridParallelCheckpointIO(GeneralCheckpointIO):
|
|
"""
|
|
CheckpointIO for Hybrid Parallel Training.
|
|
|
|
Args:
|
|
dp_group (ProcessGroup): Process group along data parallel dimension.
|
|
pp_group (ProcessGroup): Process group along pipeline parallel dimension.
|
|
tp_group (ProcessGroup): Process group along tensor parallel dimension.
|
|
zero_stage (int): The zero stage of plugin. Should be in [0, 1, 2].
|
|
verbose (bool, optional): Whether to print logging massage when saving/loading has been successfully executed. Defaults to True.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dp_group: ProcessGroup,
|
|
pp_group: ProcessGroup,
|
|
tp_group: ProcessGroup,
|
|
zero_stage: int,
|
|
verbose: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.dp_group = dp_group
|
|
self.pp_group = pp_group
|
|
self.tp_group = tp_group
|
|
self.dp_rank = dist.get_rank(self.dp_group)
|
|
self.tp_rank = dist.get_rank(self.tp_group)
|
|
self.pp_rank = dist.get_rank(self.pp_group)
|
|
self.dp_size = dist.get_world_size(dp_group)
|
|
self.pp_size = dist.get_world_size(pp_group)
|
|
self.tp_size = dist.get_world_size(tp_group)
|
|
self.use_zero = zero_stage > 0
|
|
self.verbose = verbose
|
|
self.coordinator = DistCoordinator()
|
|
|
|
@staticmethod
|
|
def _model_sharder(
|
|
model: nn.Module, prefix: str = "", keep_vars: bool = False, size_per_shard: int = 1024
|
|
) -> Iterator[Tuple[OrderedDict, int]]:
|
|
# An internel method that breaks state_dict of model into shards within limited size.
|
|
|
|
state_dict_sharder = StateDictSharder(size_per_shard)
|
|
|
|
# Save parameters.
|
|
for name, param in model.named_parameters():
|
|
if param is None:
|
|
continue
|
|
# Gather tensor pieces when using tensor parallel.
|
|
if is_padded_tensor(param):
|
|
param = to_unpadded_tensor(param)
|
|
param_ = gather_distributed_param(param, keep_vars=False)
|
|
block, block_size = state_dict_sharder.append_param(prefix + name, param_)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
# Save buffers.
|
|
for name, buf in model.named_buffers():
|
|
if buf is not None and name not in model._non_persistent_buffers_set:
|
|
buffer = buf if keep_vars else buf.detach()
|
|
block, block_size = state_dict_sharder.append_param(prefix + name, buffer)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
# Save extra states.
|
|
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
|
if (
|
|
getattr(model.__class__, "get_extra_state", torch.nn.Module.get_extra_state)
|
|
is not torch.nn.Module.get_extra_state
|
|
):
|
|
extra_state = model.get_extra_state()
|
|
block, block_size = state_dict_sharder.append_param(extra_state_key, extra_state)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
# Return the last block in sharder.
|
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
|
|
|
|
@staticmethod
|
|
def _optimizer_sharder(
|
|
optimizer: OptimizerWrapper,
|
|
use_zero: bool,
|
|
dp_group: ProcessGroup,
|
|
tp_group: ProcessGroup,
|
|
size_per_shard: int = 1024,
|
|
):
|
|
# An internel method that breaks state_dict of optimizer into shards within limited size.
|
|
|
|
state_dict_sharder = StateDictSharder(size_per_shard)
|
|
param_info = optimizer.param_info
|
|
master_to_working_map = optimizer.get_master_to_working_map()
|
|
|
|
for param, state in optimizer.optim.state.items():
|
|
if param is None:
|
|
continue
|
|
|
|
if master_to_working_map is not None:
|
|
working_param = master_to_working_map[id(param)]
|
|
else:
|
|
working_param = param
|
|
|
|
param_id = param_info["param2id"][id(working_param)]
|
|
original_shape = param_info["param2shape"][id(working_param)]
|
|
state_ = HybridParallelCheckpointIO.gather_from_sharded_optimizer_state(
|
|
state,
|
|
working_param,
|
|
original_shape=original_shape,
|
|
dp_group=dp_group,
|
|
tp_group=tp_group,
|
|
use_zero=use_zero,
|
|
inplace=False,
|
|
)
|
|
|
|
block, block_size = state_dict_sharder.append_optim_state(param_id, state_)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
# Return the last block in sharder.
|
|
yield state_dict_sharder.current_block, state_dict_sharder.current_block_size
|
|
|
|
def save_sharded_model(
|
|
self,
|
|
model: ModelWrapper,
|
|
checkpoint: str,
|
|
gather_dtensor: bool = True,
|
|
prefix: Optional[str] = None,
|
|
size_per_shard: int = 1024,
|
|
use_safetensors: bool = False,
|
|
) -> None:
|
|
"""
|
|
Save sharded model checkpoint under the given checkpointing path.
|
|
The following files will be created under the path:
|
|
- An index file (pytorch_model.bin.index.json) containing a map between model params/buffers and file names.
|
|
- Multiple files that store state tensors of models.
|
|
If pipeline parallelism is used, the filenames are in the form of "pytorch_model.<prefix>-stage-000XX-shard-000XX.bin".
|
|
If pipeline parallelism is not used, "pytorch_model.<prefix>-000XX.bin"
|
|
|
|
|
|
Args:
|
|
model (nn.Module): Model on local device to be saved.
|
|
checkpoint (str): Checkpointing path which should be a directory path.
|
|
gather_dtensor (bool, optional): Whether to gather_dtensor, currently not used. Defaults to True.
|
|
prefix (str, optional): Perfix of file to save. Defaults to None.
|
|
size_per_shard (int, optional): Size per shard in MB. Defaults to 1024.
|
|
use_safetensors (bool, optional): Whether to use safe tensors. Defaults to False.
|
|
"""
|
|
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before saving!"
|
|
model = model.unwrap()
|
|
|
|
if os.path.isfile(checkpoint):
|
|
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file")
|
|
return
|
|
|
|
Path(checkpoint).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Devices along the same dp_group share the same copies of model.
|
|
# So only let the device with dp_rank == 0 save the model.
|
|
if self.dp_rank != 0:
|
|
return
|
|
|
|
# Then collect the sharded parameters & buffers along tp_group.
|
|
# Only devices with tp_rank == 0 are responsible for model saving.
|
|
state_dict_shard = HybridParallelCheckpointIO._model_sharder(model, size_per_shard=size_per_shard)
|
|
weights_name, save_index_file = get_model_base_filenames(prefix, use_safetensors)
|
|
index_file = CheckpointIndexFile(checkpoint)
|
|
control_saving = self.tp_rank == 0
|
|
|
|
if self.pp_size == 1:
|
|
# When pipeline is not used, save the model shards as in general checkpointIO
|
|
total_size = save_state_dict_shards(
|
|
sharded_state_dict=state_dict_shard,
|
|
checkpoint=checkpoint,
|
|
index_file=index_file,
|
|
base_filename=weights_name,
|
|
is_master=control_saving,
|
|
use_safetensors=use_safetensors,
|
|
)
|
|
if control_saving:
|
|
index_file.append_meta_data("total_size", total_size)
|
|
index_file.write_index_file(save_index_file)
|
|
save_config_file(model, checkpoint)
|
|
if self.verbose and self.coordinator.is_master():
|
|
logging.info(
|
|
f"The model is split into checkpoint shards. "
|
|
f"You can find where each parameters has been saved in the "
|
|
f"index located at {save_index_file}."
|
|
)
|
|
|
|
else:
|
|
# When pipeline is used, each stage produces its own shard files and index files.
|
|
# Index files belonging to each stage are saved under a temporary folder ./tmp_index_files/
|
|
# After all the state_dicts have been saved, the master rank integrates all the index files into one final index file and deletes the tmp folder.
|
|
final_index_file_path = copy.deepcopy(save_index_file)
|
|
tmp_index_file_folder = os.path.join(checkpoint, "tmp_index_files")
|
|
Path(tmp_index_file_folder).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Manage filenames of sharded weights and index file for each pipeline stage.
|
|
weights_name = weights_name.replace(".bin", f"-stage-{self.pp_rank+1:05d}-shard.bin")
|
|
weights_name = weights_name.replace(".safetensors", f"-stage-{self.pp_rank+1:05d}-shard.safetensors")
|
|
save_index_file = save_index_file.replace(".json", f"-stage-{self.pp_rank+1:05d}.json")
|
|
save_index_file = os.path.join("tmp_index_files", save_index_file)
|
|
|
|
total_size = save_state_dict_shards(
|
|
sharded_state_dict=state_dict_shard,
|
|
checkpoint=checkpoint,
|
|
index_file=index_file,
|
|
base_filename=weights_name,
|
|
is_master=control_saving,
|
|
use_safetensors=use_safetensors,
|
|
use_pp_format=True,
|
|
)
|
|
|
|
if control_saving:
|
|
assert (
|
|
self.dp_rank == 0 and self.tp_rank == 0
|
|
), "The saving process should have both dp_rank and tp_rank as 0."
|
|
index_file.append_meta_data("total_size", total_size)
|
|
index_file.write_index_file(save_index_file)
|
|
else:
|
|
return
|
|
|
|
dist.barrier(self.pp_group)
|
|
|
|
# The global master rank integrates the index files and clean the folder.
|
|
if self.pp_rank == 0:
|
|
final_index_file = CheckpointIndexFile(checkpoint)
|
|
final_index_file.append_meta_data("total_size", 0)
|
|
|
|
for filename in os.listdir(tmp_index_file_folder):
|
|
stage_index_file = CheckpointIndexFile.from_file(os.path.join(tmp_index_file_folder, filename))
|
|
final_index_file.metadata["total_size"] += stage_index_file.metadata["total_size"]
|
|
for weight, weight_filename in stage_index_file.weight_map.items():
|
|
final_index_file.append_weight_map(weight, weight_filename)
|
|
|
|
final_index_file.write_index_file(final_index_file_path)
|
|
save_config_file(model, checkpoint)
|
|
rmtree(tmp_index_file_folder)
|
|
if self.verbose and self.coordinator.is_master():
|
|
logging.info(
|
|
f"The model is split into checkpoint shards. "
|
|
f"You can find where each parameters has been saved in the "
|
|
f"index located at {final_index_file_path}."
|
|
)
|
|
|
|
def load_sharded_model(self, model: ModelWrapper, checkpoint_index_file: Path, strict: bool = False):
|
|
"""
|
|
Load sharded model with the given path to index file of checkpoint folder.
|
|
|
|
Args:
|
|
model (nn.Module): The model to be loaded.
|
|
checkpoint_index_file (str): Path to the index file of checkpointing folder.
|
|
strict (bool, optional): For name matching during loading state_dict. Defaults to False.
|
|
This argument should be manually set to False since params on same device might be stored in different files.
|
|
"""
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before loading!"
|
|
model_before_wrapping = model # backup for model before wrapping
|
|
model = model.unwrap()
|
|
|
|
# Check whether the checkpoint uses safetensors.
|
|
use_safetensors = False
|
|
if "safetensors" in checkpoint_index_file.name:
|
|
use_safetensors = True
|
|
|
|
if use_safetensors and not is_safetensors_available():
|
|
raise ImportError("`safe_serialization` requires the `safetensors` library: `pip install safetensors`.")
|
|
|
|
# Read checkpoint index file.
|
|
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
|
|
ckpt_root_path = ckpt_index_file.root_path
|
|
weight_map = ckpt_index_file.weight_map
|
|
strict = False
|
|
|
|
# Load params & buffers to model.
|
|
# Keep a record of loaded files so that file will not be repeatedly loaded.
|
|
loaded_file = set()
|
|
|
|
missing_keys = []
|
|
missing_file_keys = []
|
|
|
|
def _load(name: str):
|
|
if name not in weight_map:
|
|
missing_file_keys.append(name)
|
|
return
|
|
filename = weight_map[name]
|
|
|
|
# If this param/buffer has been loaded before, directly return.
|
|
if filename in loaded_file:
|
|
return
|
|
|
|
file_path = os.path.join(ckpt_root_path, filename)
|
|
state_dict = load_shard_state_dict(Path(file_path), use_safetensors)
|
|
|
|
load_state_dict_into_model(
|
|
model, state_dict, missing_keys=missing_keys, strict=strict, load_sub_module=True
|
|
)
|
|
loaded_file.add(filename)
|
|
|
|
# Load parameters.
|
|
for name, _ in model.named_parameters():
|
|
_load(name)
|
|
|
|
# Load buffers.
|
|
non_persistent_buffers = set()
|
|
for n, m in model.named_modules():
|
|
non_persistent_buffers |= set(".".join((n, b)) for b in m._non_persistent_buffers_set)
|
|
for name, buf in model.named_buffers():
|
|
if buf is not None and name not in non_persistent_buffers:
|
|
_load(name)
|
|
|
|
# Load extra states.
|
|
extra_state_key = _EXTRA_STATE_KEY_SUFFIX
|
|
if (
|
|
getattr(model.__class__, "get_extra_state", torch.nn.Module.get_extra_state)
|
|
is not torch.nn.Module.get_extra_state
|
|
):
|
|
_load(extra_state_key)
|
|
|
|
# Update master params if mixed-precision training is enabled.
|
|
model_before_wrapping.update_master_params()
|
|
|
|
if self.verbose and self.coordinator.is_master():
|
|
logging.info(f"The model has been successfully loaded from sharded checkpoint: {ckpt_root_path}.")
|
|
|
|
if len(missing_keys) == 0:
|
|
raise RuntimeError(
|
|
"No weigth is loaded into the model. Please check the checkpoint files and the model structure."
|
|
)
|
|
|
|
remain_keys = reduce(lambda a, b: a & b, map(set, missing_keys))
|
|
remain_keys = remain_keys.union(set(missing_file_keys))
|
|
if len(remain_keys) > 0:
|
|
if strict:
|
|
error_msgs = "Missing key(s) in state_dict: {}. ".format(
|
|
", ".join('"{}"'.format(k) for k in missing_keys)
|
|
)
|
|
raise RuntimeError(
|
|
"Error(s) in loading state_dict for {}:\n\t{}".format(
|
|
self.__class__.__name__, "\n\t".join(error_msgs)
|
|
)
|
|
)
|
|
else:
|
|
if self.coordinator.is_master():
|
|
logging.info(f"The following keys are not loaded from checkpoint: {remain_keys}")
|
|
|
|
def save_sharded_optimizer(
|
|
self,
|
|
optimizer: OptimizerWrapper,
|
|
checkpoint: str,
|
|
gather_dtensor: bool = True,
|
|
prefix: Optional[str] = None,
|
|
size_per_shard: int = 1024,
|
|
):
|
|
"""
|
|
Save sharded optimizer checkpoint under the given checkpointing path.
|
|
The following files will be created under the path:
|
|
- An index file (pytorch_optim.bin.index.json) containing a map between optimizer states and file names
|
|
- A group file (pytorch_optim_group.bin) recording information of param_groups
|
|
- Multiple files that store state tensors of optimizers.
|
|
If pipeline parallelism is used, the filenames are in the form of "pytorch_optim.<prefix>-stage-000XX-shard-000XX.bin".
|
|
If pipeline parallelism is not used, "pytorch_optim.<prefix>-000XX.bin"
|
|
|
|
Args:
|
|
optimizer (OptimizerWrapper): Optimizer to save sharded state_dict
|
|
checkpoint (str): Path to save optimizer state_dict
|
|
gather_dtensor (bool): Whether to gather_dtensor, not used
|
|
prefix (str): Perfix of file to save
|
|
size_per_shard (int): Max file size of each file shard that store state tensors
|
|
"""
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!"
|
|
if os.path.isfile(checkpoint):
|
|
logging.error(f"Provided path ({checkpoint}) should be a directory, not a file")
|
|
return
|
|
|
|
Path(checkpoint).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Devices along the same dp_group share the same copies of states when zero is not used.
|
|
# In this case only let the device with dp_rank == 0 save the model.
|
|
if not self.use_zero and self.dp_rank != 0:
|
|
return
|
|
|
|
# Then collect the sharded states along dp_group(if using zero)/tp_group.
|
|
# Only devices with (dp_rank == 0 and tp_rank == 0) are responsible for states saving.
|
|
state_dict_shard = HybridParallelCheckpointIO._optimizer_sharder(
|
|
optimizer,
|
|
use_zero=self.use_zero,
|
|
dp_group=self.dp_group,
|
|
tp_group=self.tp_group,
|
|
size_per_shard=size_per_shard,
|
|
)
|
|
states_name, save_index_file, param_group_file = get_optimizer_base_filenames(prefix)
|
|
index_file = CheckpointIndexFile(checkpoint)
|
|
control_saving = self.dp_rank == 0 and self.tp_rank == 0
|
|
|
|
if self.pp_size == 1:
|
|
# When pipeline is not used, save the optimizer shards as in general checkpointIO
|
|
total_size = save_state_dict_shards(
|
|
sharded_state_dict=state_dict_shard,
|
|
checkpoint=checkpoint,
|
|
index_file=index_file,
|
|
base_filename=states_name,
|
|
is_master=control_saving,
|
|
)
|
|
|
|
if control_saving:
|
|
# Store param groups.
|
|
index_file.append_meta_data("param_groups", param_group_file)
|
|
group_file_path = os.path.join(checkpoint, param_group_file)
|
|
param_groups = [
|
|
{**group, "params": group_info["params"]}
|
|
for group, group_info in zip(optimizer.param_groups, optimizer.param_info["param_groups"])
|
|
]
|
|
save_param_groups({"param_groups": param_groups}, group_file_path)
|
|
# Store index file.
|
|
index_file.append_meta_data("total_size", total_size)
|
|
index_file.write_index_file(save_index_file)
|
|
if self.verbose and self.coordinator.is_master():
|
|
logging.info(
|
|
f"The optimizer is going to be split to checkpoint shards. "
|
|
f"You can find where each parameters has been saved in the "
|
|
f"index located at {save_index_file}."
|
|
)
|
|
|
|
else:
|
|
# When pipeline is used, each stage produces its own shard files and index files.
|
|
# Index files belonging to each stage are saved under a temporary folder ./tmp_index_files/
|
|
# After all the state_dicts have been saved, the master rank integrates all the index files into one final index file and deletes the tmp folder.
|
|
|
|
final_index_file_path = copy.deepcopy(save_index_file)
|
|
tmp_index_file_folder = os.path.join(checkpoint, "tmp_index_files")
|
|
Path(tmp_index_file_folder).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Manage filenames of sharded weights and index file for each pipeline stage.
|
|
states_name = states_name.replace(".bin", f"-stage-{self.pp_rank+1:05d}-shard.bin")
|
|
save_index_file = save_index_file.replace(".json", f"-stage-{self.pp_rank+1:05d}.json")
|
|
save_index_file = os.path.join("tmp_index_files", save_index_file)
|
|
|
|
total_size = save_state_dict_shards(
|
|
sharded_state_dict=state_dict_shard,
|
|
checkpoint=checkpoint,
|
|
index_file=index_file,
|
|
base_filename=states_name,
|
|
is_master=control_saving,
|
|
use_pp_format=True,
|
|
)
|
|
|
|
if control_saving:
|
|
assert (
|
|
self.dp_rank == 0 and self.tp_rank == 0
|
|
), "The saving process should have both dp_rank and tp_rank as 0."
|
|
index_file.append_meta_data("total_size", total_size)
|
|
index_file.write_index_file(save_index_file)
|
|
else:
|
|
return
|
|
|
|
dist.barrier(self.pp_group)
|
|
|
|
# The global master rank integrates the index files and clean the folder.
|
|
if self.pp_rank == 0:
|
|
final_index_file = CheckpointIndexFile(checkpoint)
|
|
final_index_file.append_meta_data("total_size", 0)
|
|
|
|
for filename in os.listdir(tmp_index_file_folder):
|
|
stage_index_file = CheckpointIndexFile.from_file(os.path.join(tmp_index_file_folder, filename))
|
|
final_index_file.metadata["total_size"] += stage_index_file.metadata["total_size"]
|
|
for param_id, state_filename in stage_index_file.weight_map.items():
|
|
final_index_file.append_weight_map(param_id, state_filename)
|
|
|
|
# Store param groups.
|
|
final_index_file.append_meta_data("param_groups", param_group_file)
|
|
group_file_path = os.path.join(checkpoint, param_group_file)
|
|
param_groups = [
|
|
{**group, "params": group_info["params"]}
|
|
for group, group_info in zip(optimizer.param_groups, optimizer.param_info["param_groups"])
|
|
]
|
|
save_param_groups({"param_groups": param_groups}, group_file_path)
|
|
|
|
final_index_file.write_index_file(final_index_file_path)
|
|
rmtree(tmp_index_file_folder)
|
|
|
|
if self.verbose and self.coordinator.is_master():
|
|
logging.info(
|
|
f"The model is split into checkpoint shards. "
|
|
f"You can find where each parameters has been saved in the "
|
|
f"index located at {final_index_file_path}."
|
|
)
|
|
|
|
def load_sharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint_index_file: str, prefix: str = ""):
|
|
"""
|
|
Load sharded optimizer with the given path to index file of checkpoint folder.
|
|
|
|
Args:
|
|
optimizer (OptimizerWrapper): The optimizer to be loaded.
|
|
checkpoint_index_file (str): Path to the index file of checkpointing folder.
|
|
prefix (str): Not used.
|
|
"""
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!"
|
|
|
|
def _get_param_id_from_optimizer_param(
|
|
param: torch.Tensor, master_to_working_map: Optional[Dict[int, torch.Tensor]] = None
|
|
):
|
|
if master_to_working_map is not None:
|
|
working_param = master_to_working_map[id(param)]
|
|
else:
|
|
working_param = param
|
|
return optimizer.param_info["param2id"][id(working_param)]
|
|
|
|
# id_map is a mapping from param ids kept by current pipeline, to their corresponding parameter objects.
|
|
# When Zero is used, the mapped parameter objects should be fp32 master parameters.
|
|
# IDs should be obtained through saved param2id mapping earlier saved in optimizer.param_info.
|
|
id_map = {}
|
|
master_to_working_map = optimizer.get_master_to_working_map()
|
|
for pg in optimizer.optim.param_groups:
|
|
for param in pg["params"]:
|
|
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map)
|
|
id_map[param_id] = param
|
|
|
|
# Read checkpoint index file.
|
|
ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file)
|
|
ckpt_root_path = ckpt_index_file.root_path
|
|
weight_map = ckpt_index_file.weight_map
|
|
weight_map = {int(k): v for k, v in weight_map.items()} # convert saved id from str to int
|
|
|
|
# Load param_groups
|
|
param_group_path = ckpt_index_file.get_param_group_filename()
|
|
if param_group_path is None:
|
|
raise RuntimeError(
|
|
f"Invalid index file path {checkpoint_index_file} for an optimizer. \
|
|
Lacking param group file under current directory."
|
|
)
|
|
saved_groups = torch.load(param_group_path)
|
|
|
|
updated_groups = []
|
|
for old_pg, saved_pg in zip(optimizer.optim.param_groups, saved_groups):
|
|
# obtain updated param group
|
|
new_pg = copy.deepcopy(saved_pg)
|
|
new_pg["params"] = old_pg["params"] # The parameters in the same group shouldn't change.
|
|
updated_groups.append(new_pg)
|
|
optimizer.optim.__dict__.update({"param_groups": updated_groups})
|
|
|
|
# Load saved states to optimizer.
|
|
# Keep a record of loaded files so that file will not be repeatedly loaded.
|
|
loaded_file = set()
|
|
for pg in optimizer.optim.param_groups:
|
|
for param in pg["params"]:
|
|
if param is None:
|
|
continue
|
|
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map)
|
|
if param_id not in weight_map:
|
|
continue
|
|
filename = weight_map[param_id]
|
|
|
|
# If this param's states has been loaded before, directly return.
|
|
if filename in loaded_file:
|
|
continue
|
|
|
|
file_path = os.path.join(ckpt_root_path, filename)
|
|
state_dict = load_shard_state_dict(Path(file_path), use_safetensors=False)
|
|
load_states_into_optimizer(optimizer.optim, state_dict, id_map, strict=True)
|
|
loaded_file.add(filename)
|
|
|
|
# Then shard the loaded optimizer states if using tp/zero.
|
|
for param, state in optimizer.optim.state.items():
|
|
device = param.device
|
|
if master_to_working_map is not None:
|
|
working_param = master_to_working_map[id(param)]
|
|
else:
|
|
working_param = param
|
|
original_shape = optimizer.param_info["param2shape"][id(working_param)]
|
|
sharded_state = self.shard_from_complete_optimizer_state(
|
|
state, current_shape=working_param.shape, original_shape=original_shape, device=device, inplace=True
|
|
)
|
|
optimizer.optim.state[param] = sharded_state
|
|
|
|
sharded_optimizer_loading_epilogue(optimizer.optim)
|
|
if self.verbose and self.coordinator.is_master():
|
|
logging.info(f"The optimizer has been successfully loaded from sharded checkpoint: {ckpt_root_path}.")
|
|
|
|
def save_unsharded_model(self, model: ModelWrapper, checkpoint: str, gather_dtensor: bool, use_safetensors: bool):
|
|
"""
|
|
Save model state dict to a single file with given checkpointing path.
|
|
|
|
Args:
|
|
model (nn.Module): Model on local device to be saved.
|
|
checkpoint (str): Checkpointing path which should be a file path. Can be absolute or relative path.
|
|
gather_dtensor (bool, optional): Whether to gather dtensor, currently not used. Defaults to True.
|
|
use_safetensors (bool, optional): Whether to use safe tensors. Defaults to False.
|
|
"""
|
|
if self.coordinator.is_master():
|
|
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!")
|
|
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before saving!"
|
|
model = model.unwrap()
|
|
|
|
if self.dp_rank != 0:
|
|
return
|
|
|
|
# The logic of collecting parameter shards along tp degree
|
|
# has been implemented by _save_to_state_dict method of ParallelModule in Shardformer.
|
|
state_dict = model.state_dict()
|
|
|
|
if self.pp_size == 1:
|
|
# When pipeline is not used, let master rank directly save the collected state_dict.
|
|
if self.tp_rank == 0:
|
|
save_state_dict(state_dict, checkpoint, use_safetensors)
|
|
else:
|
|
# When pipeline is used, first collect state_dict from every pipeline stage, then save the complete state_dict.
|
|
state_dict_list = [None for _ in range(self.pp_size)]
|
|
dist.barrier(self.pp_group)
|
|
dist.all_gather_object(state_dict_list, state_dict, self.pp_group)
|
|
|
|
# Only the master rank do the saving.
|
|
if self.coordinator.is_master():
|
|
complete_state_dict = dict()
|
|
for _state_dict in state_dict_list:
|
|
complete_state_dict.update(_state_dict)
|
|
save_state_dict(complete_state_dict, checkpoint, use_safetensors)
|
|
|
|
def load_unsharded_model(self, model: ModelWrapper, checkpoint: str, strict: bool = False):
|
|
"""
|
|
Load model from a single file with the given path of checkpoint.
|
|
|
|
Args:
|
|
model (nn.Module): The model to be loaded.
|
|
checkpoint_index_file (str): Path to the checkpoint file.
|
|
strict (bool, optional): For name matching during loading state_dict. Defaults to False.
|
|
This argument should be manually set to False since not all params in checkpoint are needed for each device when pipeline is enabled.
|
|
"""
|
|
if self.coordinator.is_master():
|
|
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!")
|
|
|
|
assert isinstance(model, ModelWrapper), "Please boost the model before loading!"
|
|
strict = False
|
|
model_before_wrapping = model
|
|
model = model.unwrap()
|
|
|
|
# Load from checkpoint. Since the logic of breaking parameter shards along tp degree
|
|
# has been implemented by _load_from_state_dict method of ParallelModule in Shardformer,
|
|
# model.load_state_dict can be directly called.
|
|
state_dict = load_state_dict(checkpoint)
|
|
model.load_state_dict(state_dict, strict=strict)
|
|
|
|
# Update master params if mixed-precision training is enabled.
|
|
model_before_wrapping.update_master_params()
|
|
|
|
def save_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str, gather_dtensor: bool):
|
|
"""
|
|
Save optimizer state dict to a file with given path.
|
|
|
|
Args:
|
|
optimizer (OptimizerWrapper): Optimizer to save sharded state_dict.
|
|
checkpoint (str): Path to save optimizer state_dict.
|
|
gather_dtensor (bool): Whether to gather_dtensor, not used.
|
|
"""
|
|
if self.coordinator.is_master():
|
|
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!")
|
|
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before saving!"
|
|
|
|
# optimizer states of parameters kept by local device('s pipeline stage)
|
|
local_states = dict()
|
|
|
|
for param, state in optimizer.optim.state.items():
|
|
if param is None:
|
|
continue
|
|
|
|
# working param is needed for obtaining correct param_id
|
|
master_to_working_map = optimizer.get_master_to_working_map()
|
|
if master_to_working_map is not None:
|
|
working_param = master_to_working_map[id(param)]
|
|
else:
|
|
working_param = param
|
|
|
|
# gather complete state from tp shards & dp shards
|
|
param_id = optimizer.param_info["param2id"][id(working_param)]
|
|
original_shape = optimizer.param_info["param2shape"][id(working_param)]
|
|
local_states[param_id] = HybridParallelCheckpointIO.gather_from_sharded_optimizer_state(
|
|
state,
|
|
working_param,
|
|
original_shape=original_shape,
|
|
dp_group=self.dp_group,
|
|
tp_group=self.tp_group,
|
|
use_zero=self.use_zero,
|
|
inplace=False,
|
|
device=get_current_device(),
|
|
)
|
|
|
|
if self.pp_size == 1:
|
|
# When pipeline is not used, let master rank directly save the collected state_dict.
|
|
param_groups = [
|
|
{**group, "params": group_info["params"]}
|
|
for group, group_info in zip(optimizer.param_groups, optimizer.param_info["param_groups"])
|
|
]
|
|
state_dict = {"param_groups": param_groups, "state": local_states}
|
|
if self.coordinator.is_master():
|
|
save_state_dict(state_dict, checkpoint, use_safetensors=False)
|
|
else:
|
|
# When pipeline is used, first collect state_dict from every pipeline stage, then save the complete state_dict.
|
|
states_list = [None for _ in range(self.pp_size)]
|
|
dist.barrier(self.pp_group)
|
|
dist.all_gather_object(states_list, local_states, self.pp_group)
|
|
|
|
# Only the master rank do the saving.
|
|
if self.coordinator.is_master():
|
|
param_groups = [
|
|
{**group, "params": group_info["params"]}
|
|
for group, group_info in zip(optimizer.param_groups, optimizer.param_info["param_groups"])
|
|
]
|
|
state_dict = {"param_groups": param_groups, "state": dict()}
|
|
for _states in states_list:
|
|
state_dict["state"].update(_states)
|
|
save_state_dict(state_dict, checkpoint, use_safetensors=False)
|
|
|
|
def load_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str):
|
|
"""
|
|
Load optimizer from a file with given path.
|
|
|
|
Args:
|
|
optimizer (OptimizerWrapper): The optimizer to be loaded.
|
|
checkpoint_index_file (str): Path to the checkpoint file.
|
|
"""
|
|
|
|
def _get_param_id_from_optimizer_param(
|
|
param: torch.Tensor, master_to_working_map: Optional[Dict[int, torch.Tensor]] = None
|
|
):
|
|
if master_to_working_map is not None:
|
|
working_param = master_to_working_map[id(param)]
|
|
else:
|
|
working_param = param
|
|
return optimizer.param_info["param2id"][id(working_param)]
|
|
|
|
if self.coordinator.is_master():
|
|
logging.warning("Please avoid using unsharded checkpointing methods when dealing with large models!")
|
|
|
|
assert isinstance(optimizer, OptimizerWrapper), "Please boost the optimizer before loading!"
|
|
|
|
# Complete optimizer state_dict loaded from checkpoint, need to be processed later.
|
|
state_dict = load_state_dict(checkpoint)
|
|
|
|
# Load param_groups.
|
|
updated_groups = []
|
|
saved_groups = state_dict["param_groups"]
|
|
for old_pg, saved_pg in zip(optimizer.optim.param_groups, saved_groups):
|
|
new_pg = copy.deepcopy(saved_pg)
|
|
new_pg["params"] = old_pg["params"] # Only keep the parameters kept by current pipeline stage.
|
|
updated_groups.append(new_pg)
|
|
optimizer.optim.__dict__.update({"param_groups": updated_groups})
|
|
|
|
# Load saved states to optimizer. First discard those states not belonging to current pipeline stage.
|
|
master_to_working_map = optimizer.get_master_to_working_map()
|
|
id_map = {}
|
|
for pg in optimizer.optim.param_groups:
|
|
for param in pg["params"]:
|
|
param_id = _get_param_id_from_optimizer_param(param, master_to_working_map)
|
|
id_map[param_id] = param
|
|
load_states_into_optimizer(optimizer.optim, state_dict["state"], id_map, strict=True)
|
|
|
|
# Then shard the loaded optimizer states if using tp/zero.
|
|
for param, state in optimizer.optim.state.items():
|
|
if param is None:
|
|
continue
|
|
device = param.device
|
|
if master_to_working_map is not None:
|
|
working_param = master_to_working_map[id(param)]
|
|
else:
|
|
working_param = param
|
|
original_shape = optimizer.param_info["param2shape"][id(working_param)]
|
|
sharded_state = self.shard_from_complete_optimizer_state(
|
|
state, current_shape=working_param.shape, original_shape=original_shape, device=device, inplace=True
|
|
)
|
|
optimizer.optim.state[param] = sharded_state
|
|
|
|
sharded_optimizer_loading_epilogue(optimizer.optim)
|
|
|
|
def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str):
|
|
"""
|
|
Save lr scheduler to checkpoint but only on master process.
|
|
"""
|
|
if self.coordinator.is_master():
|
|
super().save_lr_scheduler(lr_scheduler, checkpoint)
|
|
|
|
@staticmethod
|
|
def gather_from_sharded_optimizer_state(
|
|
state: OrderedDict,
|
|
param: torch.Tensor,
|
|
original_shape: torch.Size,
|
|
dp_group: ProcessGroup,
|
|
tp_group: ProcessGroup,
|
|
use_zero: bool,
|
|
inplace: bool,
|
|
device: torch.device = torch.device("cpu"),
|
|
) -> OrderedDict:
|
|
"""
|
|
With given parameter and its optimizer states, gather the complete optimizer state for saving.
|
|
|
|
Args:
|
|
state (OrderedDict): Optimizer states of given parameter, might be distributed among tp/dp group if using TP/Zero.
|
|
param (torch.Tensor): The given parameter. It should be working_param when using Zero.
|
|
original_shape (torch.Size): The size of parameter before sharding.
|
|
dp_group (ProcessGroup): The process group of data parallel.
|
|
tp_group (ProcessGroup): The process group of tensor parallel.
|
|
use_zero (bool): Whether Zero is used.
|
|
inplace (bool): If set to True, will update the values of argument 'state' in place. Else will make a copy of state.
|
|
device (torch.device): The destination device of loaded optimizer states. Defaults to torch.device('cpu').
|
|
|
|
Returns:
|
|
OrderedDict: The complete optimizer state of given parameter.
|
|
"""
|
|
dp_size = dist.get_world_size(dp_group)
|
|
tp_size = dist.get_world_size(tp_group)
|
|
current_shape = param.shape
|
|
state_ = state if inplace else copy.deepcopy(state)
|
|
|
|
for k, v in state_.items():
|
|
if isinstance(v, torch.Tensor) and k != "step":
|
|
# First gather Zero shards.
|
|
if use_zero:
|
|
v = v.to(get_current_device())
|
|
gather_tensor = [torch.zeros_like(v) for _ in range(dp_size)]
|
|
dist.all_gather(gather_tensor, v, group=dp_group)
|
|
v = torch.stack(gather_tensor).view(-1)[: param.numel()].reshape_as(param)
|
|
|
|
# Then gather TP shards.
|
|
partition_dim = search_tp_partition_dim(current_shape, original_shape, tp_size)
|
|
if partition_dim is not None:
|
|
gather_tensor = [torch.zeros_like(v) for _ in range(tp_size)]
|
|
dist.all_gather(gather_tensor, v, group=tp_group)
|
|
v = torch.cat(gather_tensor, dim=partition_dim)
|
|
|
|
padding_dim = search_padding_dim(v.shape, original_shape)
|
|
if padding_dim is not None:
|
|
v = init_as_padded_tensor(v, v.shape[padding_dim], original_shape[padding_dim], padding_dim)
|
|
v = to_unpadded_tensor(v)
|
|
|
|
state_[k] = v.detach().clone().to(device)
|
|
|
|
return state_
|
|
|
|
def shard_from_complete_optimizer_state(
|
|
self,
|
|
state: OrderedDict,
|
|
current_shape: torch.Size,
|
|
original_shape: torch.Size,
|
|
device: torch.device,
|
|
inplace: bool,
|
|
) -> OrderedDict:
|
|
"""
|
|
With complete optimizer states of a specific parameter loaded from checkpoint,
|
|
slice out the sharded optimizer states kept by current device.
|
|
|
|
Args:
|
|
state (OrderedDict): Complete optimizer states of a given parameter, loaded from checkpoint.
|
|
current_shape (torch.Size): The size of parameter after sharding.
|
|
original_shape (torch.Size): The size of parameter before sharding.
|
|
device (torch.device): The destination device of loaded optimizer states.
|
|
inplace (bool): If set to True, will update the values of argument 'state' in place. Else will make a copy of state.
|
|
|
|
Returns:
|
|
OrderedDict: The sharded optimizer state of the given parameter.
|
|
"""
|
|
state_ = state if inplace else copy.deepcopy(state)
|
|
|
|
for k, v in state_.items():
|
|
if isinstance(v, torch.Tensor) and k != "step":
|
|
# Shard state along tensor parallel group.
|
|
partition_dim = search_tp_partition_dim(current_shape, original_shape, self.tp_size)
|
|
global_shape = current_shape
|
|
if partition_dim is not None:
|
|
# pad embedding params
|
|
global_shape = (
|
|
*current_shape[:partition_dim],
|
|
current_shape[partition_dim] * self.tp_size,
|
|
*current_shape[partition_dim + 1 :],
|
|
)
|
|
|
|
padding_dim = search_padding_dim(global_shape, original_shape)
|
|
if padding_dim is not None:
|
|
v = to_padded_tensor(v, global_shape[padding_dim], padding_dim)
|
|
|
|
if partition_dim is not None:
|
|
slice_size = current_shape[partition_dim]
|
|
v = v.split(slice_size, dim=partition_dim)[self.tp_rank]
|
|
|
|
# Shard state along data parallel group when using Zero.
|
|
if self.use_zero:
|
|
padding_size = (self.dp_size - v.numel() % self.dp_size) % self.dp_size
|
|
with torch.no_grad():
|
|
v = v.flatten()
|
|
if padding_size > 0:
|
|
v = torch.nn.functional.pad(v, [0, padding_size])
|
|
slice_size = v.numel() // self.dp_size
|
|
v = v.split(slice_size, dim=0)[self.dp_rank]
|
|
|
|
state_[k] = v.detach().clone().to(device)
|
|
|
|
return state_
|