mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-21 17:33:49 +00:00
* [Inference]ADD Bench Chatglm2 script (#4963) * add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Pipeline inference] Combine kvcache with pipeline inference (#4938) * merge kvcache with pipeline inference and refactor the code structure * support ppsize > 2 * refactor pipeline code * do pre-commit * modify benchmark * fix bench mark * polish code * add docstring and update readme * refactor the code * fix some logic bug of ppinfer * polish readme * fix typo * skip infer test * updated c++17 compiler flags (#4983) * [Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commitfbf3c09e67
. * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention (#4965) * adding flash-decoding * clean * adding kernel * adding flash-decoding * add integration * add * adding kernel * adding kernel * adding triton 2.1.0 features for inference * update bloom triton kernel * remove useless vllm kernels * clean codes * fix * adding files * fix readme * update llama flash-decoding --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * fix ColossalEval (#4992) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [doc]Update doc for colossal-inference (#4989) * update doc * Update README.md --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [hotfix] Fix the bug where process groups were not being properly released. (#4940) * Fix the bug where process groups were not being properly released. * test * Revert "test" This reverts commit479900c139
. * [hotfix] fix the bug of repeatedly storing param group (#4951) * [doc] add supported feature diagram for hybrid parallel plugin (#4996) * [Pipeline Inference] Merge pp with tp (#4993) * refactor pipeline into new CaiInferEngine * updata llama modeling forward * merge tp with pp * update docstring * optimize test workflow and example * fix typo * add assert and todo * [release] update version (#4995) * [release] update version * [hotfix] fix ci * [moe] merge moe into main (#4978) * update moe module * support openmoe * [hotfix] fix grad accumulation plus clipping for gemini (#5002) * [hotfix] Add layer norm gradients all-reduce for sequence parallel (#4926) * [hotfix] Add layer norm gradients all-reduce for sequence parallel. (#4915) * Add layer norm gradients all-reduce for sequence parallel. * skip pipeline inference test * [hotfix] fixing polices of sequence parallel (#4922) * Add layer norm gradients all-reduce for sequence parallel. * fix parameter passing when calling get_autopolicy --------- Co-authored-by: littsk <1214689160@qq.com> * Hotfix/add grad all reduce for sequence parallel (#4927) * Add layer norm gradients all-reduce for sequence parallel. * fix parameter passing when calling get_autopolicy * fix bug using wrong variables --------- Co-authored-by: littsk <1214689160@qq.com> * fix policy initialization * fix bloom and chatglm policices * polish code of handling layernorm * fix moe module * polish code of class initializing --------- Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> * [format] applied code formatting on changed files in pull request 4926 (#5007) Co-authored-by: github-actions <github-actions@github.com> * [Inference] Fix bug in ChatGLM2 Tensor Parallelism (#5014) * fix bug * fix * fix multiquery * fix multiquery --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [misc] add code owners (#5024) * [moe] support optimizer checkpoint (#5015) * Refactor MoE Manager setup method * unshard optim ckpt * optim io * update transformer version * update requirements * update ckpt * update ckpt * update ckpt * fix engine * fix engine * Support mtbench (#5025) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [moe]: fix ep/tp tests, add hierarchical all2all (#4982) * fix: add warning for EP different behavior * fix: use shard_data in ep & tp model * to: add used_capacity * fix: fix router test * feat: add create_ep_node_group * feat: add create_ep_hierarchical_group fn * feat: add HierarchicalAllToAll * test: add hierarchical all2all test * fix: fix test errors * fix: simplify create_ep_hierarchical_group * fix: add hierarchical_alltoall arg * fix: fix environ typo * revert: revert process mesh order * to: add todo mark * fix: skip hierarchical_comm if torch < 1.13.1 * [shardformer] Fix serialization error with Tensor Parallel state saving (#5018) * Fix serialization error with Tensor Parallel state saving * Refactor state_dict CPU transfer using tree_map * [gemini] gemini support tensor parallelism. (#4942) * [colossalai]fix typo * [inference] Add smmoothquant for llama (#4904) * [inference] add int8 rotary embedding kernel for smoothquant (#4843) * [inference] add smoothquant llama attention (#4850) * add smoothquant llama attention * remove uselss code * remove useless code * fix import error * rename file name * [inference] add silu linear fusion for smoothquant llama mlp (#4853) * add silu linear * update skip condition * catch smoothquant cuda lib exception * prcocess exception for tests * [inference] add llama mlp for smoothquant (#4854) * add llama mlp for smoothquant * fix down out scale * remove duplicate lines * add llama mlp check * delete useless code * [inference] add smoothquant llama (#4861) * add smoothquant llama * fix attention accuracy * fix accuracy * add kv cache and save pretrained * refactor example * delete smooth * refactor code * [inference] add smooth function and delete useless code for smoothquant (#4895) * add smooth function and delete useless code * update datasets * remove duplicate import * delete useless file * refactor codes (#4902) * rafactor code * add license * add torch-int and smoothquant license * Update flash_attention_patch.py To be compatible with the new change in the Transformers library, where a new argument 'padding_mask' was added to forward function of attention layer. https://github.com/huggingface/transformers/pull/25598 * [kernel] support pure fp16 for cpu adam and update gemini optim tests (#4921) * [kernel] support pure fp16 for cpu adam (#4896) * [kernel] fix cpu adam kernel for pure fp16 and update tests (#4919) * [kernel] fix cpu adam * [test] update gemini optim test * [format] applied code formatting on changed files in pull request 4908 (#4918) Co-authored-by: github-actions <github-actions@github.com> * [gemini] support gradient accumulation (#4869) * add test * fix no_sync bug in low level zero plugin * fix test * add argument for grad accum * add grad accum in backward hook for gemini * finish implementation, rewrite tests * fix test * skip stuck model in low level zero test * update doc * optimize communication & fix gradient checkpoint * modify doc * cleaning codes * update cpu adam fp16 case * [hotfix] fix torch 2.0 compatibility (#4936) * [hotfix] fix launch * [test] fix test gemini optim * [shardformer] fix vit * [test] add no master test for low level zero plugin (#4934) * [format] applied code formatting on changed files in pull request 4820 (#4886) Co-authored-by: github-actions <github-actions@github.com> * [nfc] fix some typo with colossalai/ docs/ etc. (#4920) * [Refactor] Integrated some lightllm kernels into token-attention (#4946) * add some req for inference * clean codes * add codes * add some lightllm deps * clean codes * hello * delete rms files * add some comments * add comments * add doc * add lightllm deps * add lightllm cahtglm2 kernels * add lightllm cahtglm2 kernels * replace rotary embedding with lightllm kernel * add some commnets * add some comments * add some comments * add * replace fwd kernel att1 * fix a arg * add * add * fix token attention * add some comments * clean codes * modify comments * fix readme * fix bug * fix bug --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> * [test] merge old components to test to model zoo (#4945) * [test] add custom models in model zoo * [test] update legacy test * [test] update model zoo * [test] update gemini test * [test] remove components to test * [inference] add reference and fix some bugs (#4937) * add reference and fix some bugs * update gptq init --------- Co-authored-by: Xu Kai <xukai16@foxamil.com> * [Inference]ADD Bench Chatglm2 script (#4963) * add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Pipeline inference] Combine kvcache with pipeline inference (#4938) * merge kvcache with pipeline inference and refactor the code structure * support ppsize > 2 * refactor pipeline code * do pre-commit * modify benchmark * fix bench mark * polish code * add docstring and update readme * refactor the code * fix some logic bug of ppinfer * polish readme * fix typo * skip infer test * updated c++17 compiler flags (#4983) * [Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commitfbf3c09e67
. * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commitfced140250
. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [Kernels]Updated Triton kernels into 2.1.0 and adding flash-decoding for llama token attention (#4965) * adding flash-decoding * clean * adding kernel * adding flash-decoding * add integration * add * adding kernel * adding kernel * adding triton 2.1.0 features for inference * update bloom triton kernel * remove useless vllm kernels * clean codes * fix * adding files * fix readme * update llama flash-decoding --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * fix ColossalEval (#4992) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [doc]Update doc for colossal-inference (#4989) * update doc * Update README.md --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [hotfix] Fix the bug where process groups were not being properly released. (#4940) * Fix the bug where process groups were not being properly released. * test * Revert "test" This reverts commit479900c139
. * [hotfix] fix the bug of repeatedly storing param group (#4951) * [doc] add supported feature diagram for hybrid parallel plugin (#4996) * [Pipeline Inference] Merge pp with tp (#4993) * refactor pipeline into new CaiInferEngine * updata llama modeling forward * merge tp with pp * update docstring * optimize test workflow and example * fix typo * add assert and todo * [release] update version (#4995) * [release] update version * [hotfix] fix ci * [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp [gemini] gemini support tp * fix fix fix * update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO update checkpointIO * support fused layernorm support fused layernorm support fused layernorm * update fusedlayernorm update fusedlayernorm update fusedlayernorm * add sequence parallel to gemini add sequence parallel to gemini * fix * fix comments fix comments fix comments * fix * fix t5 * clear cache * fix * activate ci * activate ci * fix * fix * fix * fix * revert * modify tp gather method modify tp gather method modify tp gather method modify tp gather method * fix test --------- Co-authored-by: Xu Kai <xukai16@foxmail.com> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Baizhou Zhang <eddiezhang@pku.edu.cn> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: cuiqing.li <lixx336@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> Co-authored-by: Xu Kai <xukai16@foxamil.com> Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com> Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: littsk <1214689160@qq.com> Co-authored-by: ppt0011 <143150326+ppt0011@users.noreply.github.com> * [hotfix] Suport extra_kwargs in ShardConfig (#5031) * [refactor]: replace inference args with extra_kwargs in ShardConfig * modify shardconfig * polish code * fix policy bug in llama * fix bug in auto policy * remove setattr in ShardConfig * fix wrong EOS token in ColossalChat * [Kernels]Update triton kernels into 2.1.0 (#5046) * update flash-context-attention * adding kernels * fix * reset * add build script * add building process * add llama2 exmaple * add colossal-llama2 test * clean * fall back test setting * fix test file * clean * clean * clean --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [pipeline,shardformer] Fix p2p efficiency in pipeline, allow skipping loading weight not in weight_map when `strict=False`, fix llama flash attention forward, add flop estimation by megatron in llama benchmark (#5017) * Use p2p * Cannot bidirectonal send p2p * Refactor tensor creation and serialization in P2P communication * Fix llama forward args in flash attention * Add flop estimate from megatron * Support loading weight not in weight_map when strict=False in hybrid_parallel * Use send_forward_recv_backward, etc in 1f1b * Use dataclass for metdata Remove torch.cuda.synchronize() as suggested * Add comment about the torch.cuda.synchronize for potential error * Typo * Update hybrid_parallel_checkpoint_io.py * Update p2p.py * Update one_f_one_b.py * Update p2p.py --------- Co-authored-by: flybird11111 <1829166702@qq.com> * [gemini] gemini support extra-dp (#5043) * support ddp * fix * fix * fix fix * support ddp * fix * fix * fix fix * simplify tests * fix * fix * fix fix fix * fix * [shardformer] fix llama error when transformers upgraded. (#5055) * fix-llama * Update llama.py * [hotfix]: modify create_ep_hierarchical_group and add test (#5032) * feat: modify create_ep_hierarchical_group args * test: add ep tests * fix: remove get_process_group_ranks * fix: fix src_rank * [exampe] fix llama example' loss error when using gemini plugin (#5060) fix llama example * [inference] Refactor inference architecture (#5057) * [inference] support only TP (#4998) * support only tp * enable tp * add support for bloom (#5008) * [refactor] refactor gptq and smoothquant llama (#5012) * refactor gptq and smoothquant llama * fix import error * fix linear import torch-int * fix smoothquant llama import error * fix import accelerate error * fix bug * fix import smooth cuda * fix smoothcuda * [Inference Refactor] Merge chatglm2 with pp and tp (#5023) merge chatglm with pp and tp * [Refactor] remove useless inference code (#5022) * remove useless code * fix quant model * fix test import bug * mv original inference legacy * fix chatglm2 * [Refactor] refactor policy search and quant type controlling in inference (#5035) * [Refactor] refactor policy search and quant type controling in inference * [inference] update readme (#5051) * update readme * update readme * fix architecture * fix table * fix table * [inference] udpate example (#5053) * udpate example * fix run.sh * fix rebase bug * fix some errors * update readme * add some features * update interface * update readme * update benchmark * add requirements-infer --------- Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> * [Kernels]added flash-decoidng of triton (#5063) * added flash-decoidng of triton based on lightllm kernel * add req * clean * clean * delete build.sh --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> * [misc] remove outdated submodule (#5070) * [npu] add npu support for gemini and zero (#5067) * [npu] setup device utils (#5047) * [npu] add npu device support * [npu] support low level zero * [test] update npu zero plugin test * [hotfix] fix import * [test] recover tests * [npu] gemini support npu (#5052) * [npu] refactor device utils * [gemini] support npu * [example] llama2+gemini support npu * [kernel] add arm cpu adam kernel (#5065) * [kernel] add arm cpu adam * [optim] update adam optimizer * [kernel] arm cpu adam remove bf16 support * [hotfix/hybridengine] fix bug when tp*pp size = 1 (#5069) * [inference] update examples and engine (#5073) * update examples and engine * fix choices * update example * [format] applied code formatting on changed files in pull request 5067 (#5072) Co-authored-by: github-actions <github-actions@github.com> * [hotfix/hybridengine] Fix init model with random parameters in benchmark (#5074) * fix init model with random parameters * fix example * [inference] refactor examples and fix schedule (#5077) * [setup] refactor infer setup * [hotfix] fix infenrece behavior on 1 1 gpu * [exmaple] refactor inference examples * fix thrust-transform-reduce error (#5078) * [nfc] fix typo in docs/ (#4972) * [nfc] fix typo and author name (#5089) * [gemini]fix gemini optimzer, saving Shardformer in Gemini got list assignment index out of range (#5085) * [Hotfix] Fix model policy matching strategy in ShardFormer (#5064) * hotfix/Fix get model policy strategy in ShardFormer * fix bug in auto policy * [shardformer]fix flash attention, when mask is casual, just don't unpad it (#5084) * fix flash attn * fix fix * [npu] add npu support for hybrid plugin and llama (#5090) * llama 3d * update * fix autocast * [Feature] Add document retrieval QA (#5020) * add langchain * add langchain * Add files via upload * add langchain * fix style * fix style: remove extra space * add pytest; modified retriever * add pytest; modified retriever * add tests to build_on_pr.yml * fix build_on_pr.yml * fix build on pr; fix environ vars * seperate unit tests for colossalqa from build from pr * fix container setting; fix environ vars * commented dev code * add incremental update * remove stale code * fix style * change to sha3 224 * fix retriever; fix style; add unit test for document loader * fix ci workflow config * fix ci workflow config * add set cuda visible device script in ci * fix doc string * fix style; update readme; refactored * add force log info * change build on pr, ignore colossalqa * fix docstring, captitalize all initial letters * fix indexing; fix text-splitter * remove debug code, update reference * reset previous commit * update LICENSE update README add key-value mode, fix bugs * add files back * revert force push * remove junk file * add test files * fix retriever bug, add intent classification * change conversation chain design * rewrite prompt and conversation chain * add ui v1 * ui v1 * fix atavar * add header * Refactor the RAG Code and support Pangu * Refactor the ColossalQA chain to Object-Oriented Programming and the UI demo. * resolved conversation. tested scripts under examples. web demo still buggy * fix ci tests * Some modifications to add ChatGPT api * modify llm.py and remove unnecessary files * Delete applications/ColossalQA/examples/ui/test_frontend_input.json * Remove OpenAI api key * add colossalqa * move files * move files * move files * move files * fix style * Add Readme and fix some bugs. * Add something to readme and modify some code * modify a directory name for clarity * remove redundant directory * Correct a type in llm.py * fix AI prefix * fix test_memory.py * fix conversation * fix some erros and typos * Fix a missing import in RAG_ChatBot.py * add colossalcloud LLM wrapper, correct issues in code review --------- Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu> * remove duplicate import (#5100) * fix typo change lazy_iniy to lazy_init (#5099) * [nfc] fix typo change directoty to directory (#5111) * [FEATURE] Add Safety Eval Datasets to ColossalEval (#5095) * add safetybench and cvalues(responsibility) eval dataset * Modify code according to review suggestions --------- Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu> * [hotfix] fixed memory usage of shardformer module replacement (#5122) * [shardformer]: support gpt-j, falcon, Mistral and add interleaved pipeline for bert (#5088) * [shardformer] implement policy for all GPT-J models and test * [shardformer] support interleaved pipeline parallel for bert finetune * [shardformer] shardformer support falcon (#4883) * [shardformer]: fix interleaved pipeline for bert model (#5048) * [hotfix]: disable seq parallel for gptj and falcon, and polish code (#5093) * Add Mistral support for Shardformer (#5103) * [shardformer] add tests to mistral (#5105) --------- Co-authored-by: Pengtai Xu <henryxu880@gmail.com> Co-authored-by: ppt0011 <143150326+ppt0011@users.noreply.github.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: eric8607242 <e0928021388@gmail.com> * [doc] add moe news (#5128) * [doc] add moe news * [doc] add moe news * [doc] add moe news * [doc] updated paper citation (#5131) * fix typo change JOSNL TO JSONL etc. (#5116) * [format] applied code formatting on changed files in pull request 5088 (#5127) Co-authored-by: github-actions <github-actions@github.com> * [format] applied code formatting on changed files in pull request 5124 (#5125) Co-authored-by: github-actions <github-actions@github.com> * [format] applied code formatting on changed files in pull request 5115 (#5118) Co-authored-by: github-actions <github-actions@github.com> * [accelerator] init the accelerator module (#5129) * [accelerator] init the accelerator module * polish code * polish code * polish code * polish code * [npu] support triangle attention for llama (#5130) * update fused attn * update spda * tri attn * update triangle * import * fix * fix * [plugin]fix 3d checkpoint load when booster boost without optimizer. (#5135) * fix 3d checkpoint load when booster boost without optimizer fix 3d checkpoint load when booster boost without optimizer * test ci * revert ci * fix fix * [ColossalQA] refactor server and webui & add new feature (#5138) * refactor server and webui & add new feature * add requirements * modify readme and ui * [doc] fix colossalqa document (#5146) * fix doc * modify doc * fix (#5158) fix * [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> * [gemini] hotfix NaN loss while using Gemini + tensor_parallel (#5150) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * [colossalqa] fix pangu api (#5170) * fix pangu api * add comment * [ColossalEval] Support GSM, Data Leakage Evaluation and Tensor Parallel (#5169) * Support GSM, Data Leakage Evaluation and Tensor Parallel * remove redundant code and update inference.py in examples/gpt_evaluation --------- Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [shardformer] llama support DistCrossEntropy (#5176) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * [Colossal-Llama-2] Add finetuning Colossal-Llama-2 example (#4878) * Add finetuning Colossal-Llama-2 example * Add finetuning Colossal-Llama-2 example 2 * Add finetuning Colossal-Llama-2 example and support NEFTuning * Add inference example and refine neftune * Modify readme file * update the imports --------- Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> * llama support dist-cross fix fix fix fix fix fix fix fix * fix * fix * fix fix * test ci * test ci * fix * fix ci * fix ci --------- Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> * Fix ColossalEval (#5186) Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> * [doc] update pytorch version in documents. (#5177) * fix aaa fix fix fix * fix * fix * test ci * fix ci fix * update pytorch version in documents * polish readme in application/chat (#5194) * [pipeline]: fix p2p comm, add metadata cache and support llama interleaved pp (#5134) * test: add more p2p tests * fix: remove send_forward_recv_forward as p2p op list need to use the same group * fix: make send and receive atomic * feat: update P2PComm fn * feat: add metadata cache in 1f1b * feat: add metadata cache in interleaved pp * feat: modify is_xx_stage fn * revert: add _broadcast_object_list * feat: add interleaved pp in llama policy * feat: set NCCL_BUFFSIZE in HybridParallelPlugin * Improve logic for selecting metrics (#5196) Co-authored-by: Xu <yuanchen.xu00@gmail.com> * [doc] Update required third-party library list for testing and torch comptibility checking (#5207) * doc/update requirements-test.txt * update torch-cuda compatibility check * support linear accumulation fusion (#5199) support linear accumulation fusion support linear accumulation fusion fix * [pipeline]: support arbitrary batch size in forward_only mode (#5201) * fix: remove drop last in val & test dataloader * feat: add run_forward_only, support arbitrary bs * chore: modify ci script * [pipeline]: add p2p fallback order and fix interleaved pp deadlock (#5214) * fix: add fallback order option and update 1f1b * fix: fix deadlock comm in interleaved pp * test: modify p2p test * [devops] update torch versoin in ci (#5217) * fix-test (#5210) fix-test fix-test * fix flash attn (#5209) * [nfc] fix typo colossalai/shardformer/ (#5133) * [Colossal-LLaMA-2] Release Colossal-LLaMA-2-13b-base model (#5224) * update readme * update readme * update link * update * update readme * update * update * update * update title * update example * update example * fix content * add conclusion * add license * update * update * update version * fix minor * [doc] Update README.md of Colossal-LLAMA2 (#5233) * Update README.md * Update README.md * [doc] Make leaderboard format more uniform and good-looking (#5231) * Make leaderboard format more unifeid and good-looking * Update README.md * Update README.md * [doc] add Colossal-LLaMA-2-13B (#5234) * [doc] add Colossal-LLaMA-2-13B * [doc] add Colossal-LLaMA-2-13B * [doc] add Colossal-LLaMA-2-13B * [format] applied code formatting on changed files in pull request 5234 (#5235) Co-authored-by: github-actions <github-actions@github.com> * [doc] SwiftInfer release (#5236) * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [doc] SwiftInfer release * [npu] use extension for op builder (#5172) * update extension * update cpu adam * update is * add doc for cpu adam * update kernel * update commit * update flash * update memory efficient * update flash attn * update flash attention loader * update api * fix * update doc * update example time limit * reverse change * fix doc * remove useless kernel * fix * not use warning * update * update * [pipeline] A more general _communicate in p2p (#5062) * A more general _communicate * feat: finish tree_flatten version p2p * fix: update p2p api calls --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [npu] change device to accelerator api (#5239) * update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com> * [hotfix] removed unused flag (#5242) * [doc] fix typo in Colossal-LLaMA-2/README.md (#5247) * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed ddp test (#5254) * [ci] fixed ddp test * polish * fix typo in applications/ColossalEval/README.md (#5250) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [doc] fix doc typo (#5256) * [doc] fix annotation display * [doc] fix llama2 doc * [hotfix]: add pp sanity check and fix mbs arg (#5268) * fix: fix misleading mbs arg * feat: add pp sanity check * fix: fix 1f1b sanity check * [workflow] fixed incomplete bash command (#5272) * [workflow] fixed oom tests (#5275) * [workflow] fixed oom tests * polish * polish * polish * [ci] fix test_hybrid_parallel_plugin_checkpoint_io.py (#5276) * fix ci fix * fix test * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests * fix --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [shardformer] hybridparallelplugin support gradients accumulation. (#5246) * support gradients acc fix fix fix fix fix fix fix fix fix fix fix fix fix * fix fix * fix fix fix * [hotfix] Fix ShardFormer test execution path when using sequence parallelism (#5230) * fix auto loading gpt2 tokenizer (#5279) * [doc] add llama2-13B disyplay (#5285) * Update README.md * fix 13b typo --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> * fix llama pretrain (#5287) * [hotfix] fix 3d plugin test (#5292) * fix bug for mefture (#5299) * [NFC] polish applications/Colossal-LLaMA-2/colossal_llama2/tokenizer/init_tokenizer.py code style (#5228) * fix some typo (#5307) * [feat] refactored extension module (#5298) * [feat] refactored extension module * polish * polish * polish * polish * polish * polish * polish * polish * polish * polish * [workflow] updated CI image (#5318) * [accelerator] fixed npu api * [tests] fix t5 test. (#5322) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * fix t5 test --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [doc] added docs for extensions (#5324) * [doc] added docs for extensions * polish * polish * fix typo under extensions/ (#5330) * fix typo change dosen't to doesn't (#5308) * [extension] fixed exception catch (#5342) * [Chat] fix sft loss nan (#5345) * fix script * fix script * fix chat nan * fix chat nan * [checkpointio] fix gemini and hybrid parallel optim checkpoint (#5347) * [checkpointio] fix hybrid parallel optim checkpoint * [extension] fix cuda extension * [checkpointio] fix gemini optimizer checkpoint * polish code * [fix] remove unnecessary dp_size assert (#5351) * fix: remove unnecessary assert * test: add more 3d plugin tests * fix: add warning * [gemini] fix param op hook when output is tuple (#5355) * [gemini] fix param op hook when output is tuple * [gemini] fix param op hook * [llama] fix dataloader for hybrid parallel (#5358) * [plugin] refactor prepare dataloader * [plugin] update train script * [llama] update training script (#5360) * [llama] update training script * [doc] polish docstr * [llama] add flash attn patch for npu (#5362) * [llama] fix neftune & pbar with start_step (#5364) * [eval] update llama npu eval (#5366) * [llama] polish training script and fix optim ckpt (#5368) * [lr-scheduler] fix load state dict and add test (#5369) * [llama] fix memory issue (#5371) * [llama] fix memory issue * [llama] add comment * [moe] init mixtral impl * [moe] update capacity computing (#5253) * [moe] top2 allow uneven input * [moe] update capacity computing * [moe] remove debug info * [moe] update capacity computing * [moe] update capacity computing * [moe] support mixtral (#5309) * [moe] add mixtral block for single expert * [moe] mixtral block fwd support uneven ep * [moe] mixtral block bwd support uneven ep * [moe] add mixtral moe layer * [moe] simplify replace * [meo] support save sharded mixtral * [meo] support load sharded mixtral * [meo] support save sharded optim * [meo] integrate moe manager into plug * [meo] fix optimizer load * [meo] fix mixtral layer * [moe] fix mixtral checkpoint io (#5314) * [moe] fix mixtral forward default value (#5329) * [moe] fix mixtral optim checkpoint (#5344) * [moe] fix tests * [release] update version (#5380) * [llama] fix training and inference scripts (#5384) * [llama] refactor inference example to fit sft * [llama] fix training script to fit gemini * [llama] fix inference script * [doc] Fix typo (#5361) * [doc] updated installation command (#5389) * [hotfix] fix variable type for top_p (#5313) Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [hotfix] Fix wrong import in meta_registry (#5392) * [extension] hotfix jit extension setup (#5402) * [example] reuse flash attn patch (#5400) * [fsdp] impl save/load shard model/optimizer (#5357) * [setup] fixed nightly release (#5388) * [shardformer]gather llama logits (#5398) * gather llama logits * fix * update requirements (#5407) * [workflow] added pypi channel (#5412) * [doc] fix blog link * [doc] fix blog link * fix sft single turn inference example (#5416) * [example]add gpt2 benchmark example script. (#5295) * benchmark gpt2 * fix fix fix fix * [doc] fix typo in Colossal-LLaMA-2/README.md (#5247) * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed ddp test (#5254) * [ci] fixed ddp test * polish * fix typo in applications/ColossalEval/README.md (#5250) * [ci] fix shardformer tests. (#5255) * fix ci fix * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [doc] fix doc typo (#5256) * [doc] fix annotation display * [doc] fix llama2 doc * [hotfix]: add pp sanity check and fix mbs arg (#5268) * fix: fix misleading mbs arg * feat: add pp sanity check * fix: fix 1f1b sanity check * [workflow] fixed incomplete bash command (#5272) * [workflow] fixed oom tests (#5275) * [workflow] fixed oom tests * polish * polish * polish * [ci] fix test_hybrid_parallel_plugin_checkpoint_io.py (#5276) * fix ci fix * fix test * revert: revert p2p * feat: add enable_metadata_cache option * revert: enable t5 tests * fix --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [shardformer] hybridparallelplugin support gradients accumulation. (#5246) * support gradients acc fix fix fix fix fix fix fix fix fix fix fix fix fix * fix fix * fix fix fix * [hotfix] Fix ShardFormer test execution path when using sequence parallelism (#5230) * fix auto loading gpt2 tokenizer (#5279) * [doc] add llama2-13B disyplay (#5285) * Update README.md * fix 13b typo --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> * fix llama pretrain (#5287) * fix * fix * fix fix * fix fix fix * fix fix * benchmark gpt2 * fix fix fix fix * [workflow] fixed build CI (#5240) * [workflow] fixed build CI * polish * polish * polish * polish * polish * [ci] fixed booster test (#5251) * [ci] fixed booster test * [ci] fixed booster test * [ci] fixed booster test * fix fix * fix fix fix * fix * fix fix fix fix fix * fix * Update shardformer.py --------- Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: Michelle <97082656+MichelleMa8@users.noreply.github.com> Co-authored-by: Desperado-Jia <502205863@qq.com> * [doc] sora release (#5425) * [doc] sora release * [doc] sora release * [doc] sora release * [doc] sora release * [devops] fix extention building (#5427) * [hotfix] fix sd vit import error (#5420) * fix import error * Update dpt_depth.py --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [hotfix] fix typo of openmoe model source (#5403) * [doc] update some translations with README-zh-Hans.md (#5382) * [hotfix] fix typo change _descrption to _description (#5331) * [hotfix] fix typo change enabel to enable under colossalai/shardformer/ (#5317) * [eval-hotfix] set few_shot_data to None when few shot is disabled (#5422) * [hotfix] fix typo change MoECheckpintIO to MoECheckpointIO (#5335) Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [doc] Fix typo s/infered/inferred/ (#5288) Signed-off-by: hugo-syn <hugo.vincent@synacktiv.com> * [hotfix] fix stable diffusion inference bug. (#5289) * Update train_ddp.yaml delete "strategy" to fix DDP config loading bug in "main.py" * Update train_ddp.yaml fix inference with scripts/txt2img.py config file load bug. * Update README.md add pretrain model test code. * [colossal-llama2] add stream chat examlple for chat version model (#5428) * add stream chat for chat version * remove os.system clear * modify function name * [release] update version (#5411) * fix tensor data update for gemini loss caluculation (#5442) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme * [release] grok-1 314b inference (#5490) * [release] grok-1 inference * [release] grok-1 inference * [release] grok-1 inference * [example] update Grok-1 inference (#5495) * revise grok-1 example * remove unused arg in scripts * prevent re-installing torch * update readme * revert modifying colossalai requirements * add perf * trivial * add tokenizer url * [hotfix] set return_outputs=False in examples and polish code (#5404) * fix: simplify merge_batch * fix: use return_outputs=False to eliminate extra memory consumption * feat: add return_outputs warning * style: remove `return_outputs=False` as it is the default value * [release] grok-1 inference benchmark (#5500) * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [shardformer]Fix lm parallel. (#5480) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * fix lm forward distribution * fix * test ci * fix * [fix] fix grok-1 example typo (#5506) * [devops] fix example test ci (#5504) * Fix ColoTensorSpec for py11 (#5440) * fixed layout converter caching and updated tester * Empty-Commit * [shardformer] update colo attention to support custom mask (#5510) * [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests * [format] applied code formatting on changed files in pull request 5510 (#5517) Co-authored-by: github-actions <github-actions@github.com> * [shardformer] fix pipeline forward error if custom layer distribution is used (#5189) * Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution * Change static methods for t5 layer distribution to member functions * Change static methods for whisper layer distribution to member functions * Replace whisper policy usage with self one * Fix test case to use non-static layer distribution methods * fix: fix typo --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [Fix] Grok-1 use tokenizer from the same pretrained path (#5532) * [fix] use tokenizer from the same pretrained path * trust remote code * [ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com> * [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508) * feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig` * feat: apply `GradientCheckpointConfig` to policy and llama_forward * feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager * fix: add optional args for `distribute_layer` and `get_stage_index` * fix: fix changed API calls * test: update llama tests * style: polish `GradientCheckpointConfig` * fix: fix pipeline utils tests * fix incorrect sharding without zero (#5545) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] Sequence Parallelism Optimization (#5533) * sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * [hotfix] quick fixes to make legacy tutorials runnable (#5559) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [fix] fix typo s/muiti-node /multi-node etc. (#5448) * [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548) * [devops] remove post commit ci (#5566) * [devops] remove post commit ci * [misc] run pre-commit on all files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [doc] fix ColossalMoE readme (#5599) * fix readme * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [zero] support multiple (partial) backward passes (#5596) * [zero] support multiple (partial) backward passes * [misc] update requirements * [shardformer] refactor embedding resize (#5603) * [branch rebase] rebase main to Feature/resize_embedding (#5554) * fix * [release] update version (#5411) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [CI] run pre-commit (#5577) * fix * [release] update version (#5411) * [hotfix] fix typo s/keywrods/keywords etc. (#5429) * [devops] fix compatibility (#5444) * [devops] fix compatibility * [hotfix] update compatibility test on pr * [devops] fix compatibility * [devops] record duration during comp test * [test] decrease test duration * fix falcon * [shardformer] fix gathering output when using tensor parallelism (#5431) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * [doc] release Open-Sora 1.0 with model weights (#5468) * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] release Open-Sora 1.0 with model weights * [doc] update open-sora demo (#5479) * [doc] update open-sora demo * [doc] update open-sora demo * [doc] update open-sora demo * [example] add grok-1 inference (#5485) * [misc] add submodule * remove submodule * [example] support grok-1 tp inference * [example] add grok-1 inference script * [example] refactor code * [example] add grok-1 readme * [exmaple] add test ci * [exmaple] update readme * run pre-commit --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * [rebase] rebase main to resize-embedding (#5581) * [release] grok-1 314b inference (#5490) * [release] grok-1 inference * [release] grok-1 inference * [release] grok-1 inference * [example] update Grok-1 inference (#5495) * revise grok-1 example * remove unused arg in scripts * prevent re-installing torch * update readme * revert modifying colossalai requirements * add perf * trivial * add tokenizer url * [hotfix] set return_outputs=False in examples and polish code (#5404) * fix: simplify merge_batch * fix: use return_outputs=False to eliminate extra memory consumption * feat: add return_outputs warning * style: remove `return_outputs=False` as it is the default value * [release] grok-1 inference benchmark (#5500) * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [release] grok-1 inference benchmark * [shardformer]Fix lm parallel. (#5480) * fix * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * fix lm forward distribution * fix * test ci * fix * [fix] fix grok-1 example typo (#5506) * [devops] fix example test ci (#5504) * Fix ColoTensorSpec for py11 (#5440) * fixed layout converter caching and updated tester * Empty-Commit * [shardformer] update colo attention to support custom mask (#5510) * [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests * [format] applied code formatting on changed files in pull request 5510 (#5517) Co-authored-by: github-actions <github-actions@github.com> * [shardformer] fix pipeline forward error if custom layer distribution is used (#5189) * Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution * Change static methods for t5 layer distribution to member functions * Change static methods for whisper layer distribution to member functions * Replace whisper policy usage with self one * Fix test case to use non-static layer distribution methods * fix: fix typo --------- Co-authored-by: Wenhao Chen <cwher@outlook.com> * [Fix] Grok-1 use tokenizer from the same pretrained path (#5532) * [fix] use tokenizer from the same pretrained path * trust remote code * [ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com> * [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508) * feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig` * feat: apply `GradientCheckpointConfig` to policy and llama_forward * feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager * fix: add optional args for `distribute_layer` and `get_stage_index` * fix: fix changed API calls * test: update llama tests * style: polish `GradientCheckpointConfig` * fix: fix pipeline utils tests * fix incorrect sharding without zero (#5545) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] Sequence Parallelism Optimization (#5533) * sequence parallel optimization * validate sequence parallel in llama (code to be polished) * shardformer api writing * integrate sequence parallel in ShardFormer * fix pp bugs and sp bugs for LlaMa model * integrating ring-based sequence parallelism into ShardFormer * [sequence parallelism]: Add fused megatron function * integrating ring-based sequence parallelism into ShardFormer --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * fix bugs when useing sp and flashattention together * fix operation function name * support flash attention for ulysses-style sp * clarify sp process group * fix compatibility bugs in moe plugin * fix fused linear bugs * fix linear layer test * support gpt model all-to-all sp * modify shard data dimension (meant to be dim=-1) * support megtron-style sp and distributed attn for llama model * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * finish sp mode 3 support for gpt * using all_to_all_single when batch size is 1 * support mode 2 sp in gpt2 (#5) * [shardformer] add megatron sp to llama * support llama7B 128k with distributed attention * [shardformer] robustness enhancement * add block attn * sp mode 1: keep input as a complete sequence * fix sp compatability * refactor ring implementation * support mode 2 sp in gpt2 * polish code * enable distributed attn mask when using sp mode 2 and 3 in llama * automatically enable flash attn when using sp mode 2 and 3 in llama * inplace attn mask * add zero2 support for sequence parallel * polish code * fix bugs * fix gemini checkpoint io * loose tensor checking atol and rtol * add comment * fix llama layernorm grad * fix zero grad * fix zero grad * fix conflict * update split and gather auto grad func * sequence parallel: inside text split (#6) * polish code (part 1) * polish code (part 2) * polish code (part 2.5) * polish code (part 3) * sequence parallel: inside text split * miscellaneous minor fixes * polish code * fix ulysses style ZeRO * sequence parallel: inside text split * miscellaneous minor fixes * disaggregate sp group and dp group for sp * fix llama and gpt sp * polish code * move ulysses grad sync to ddp (#9) * remove zero_stage and unbind the grad sync for alltoall sp * add 2d group creation test * move ulysses grad sync to ddp * add 2d group creation test * remove useless code * change shard config not to enable sp when enable_all_optimizations * add sp warnings for several model * remove useless code --------- Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> * [hotfix] quick fixes to make legacy tutorials runnable (#5559) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [fix] fix typo s/muiti-node /multi-node etc. (#5448) * [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548) * [devops] remove post commit ci (#5566) * [devops] remove post commit ci * [misc] run pre-commit on all files * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --------- Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [shardformer]enable padding vocabulary size. (#5489) * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix * fix fix fix * fix gather output * fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * revert * padding vocab * padding vocabe * fix * fix * fxi * test ci * fix fix fix fix * fix fix * fix * fix * Update hybrid_parallel_plugin.py fix fix fix * fix fix * fix fix * fix * resolve super init resolve super init resolve super init resolve super init * resolve comments * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * vocab checkpointio * padding vocab_size when using pipeline parallellism padding vocab_size when using pipeline parallellism fix fix * fix fix fix * fix * fix fix resize embedding fix resize embedding * fix resize embedding fix * revert * revert * padding vocab * fix * fix fix * fix fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix ci * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * cherry-pick * revert moe modify * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix fix fix fix fix fix fix fix * resolve comments resolve comments resolve comments resolve comments resolve comments * ptensor ptensor resolve comments fix fix fix fix fix resolve comments resolve comments resolve comments resolve comments resolve comments --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix rebase * fix rebase --------- Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [hotfix] Fix examples no pad token & auto parallel codegen bug; (#5606) * fix no pad token bug * fixed some auto parallel codegen bug, but might not run on torch 2.1 --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [shardformer] fix pipeline grad ckpt (#5620) * [shardformer] fix pipeline grad ckpt * [lora] add lora APIs for booster, support lora for TorchDDP (#4981) * add apis and peft requirement * add liscense and implement apis * add checkpointio apis * add torchddp fwd_bwd test * add support_lora methods * add checkpointio test and debug * delete unneeded codes * remove peft from LICENSE * add concrete methods for enable_lora * simplify enable_lora api * fix requirements * [LowLevelZero] low level zero support lora (#5153) * low level zero support lora low level zero support lora * add checkpoint test * add checkpoint test * fix * fix * fix * fix fix fix fix * fix * fix fix fix fix fix fix fix * fix * fix fix fix fix fix fix fix * fix * test ci * git # This is a combination of 3 commits. Update low_level_zero_plugin.py Update low_level_zero_plugin.py fix fix fix * fix naming fix naming fix naming fix * [feature] qlora support * qlora follow commit * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * migrate qutization folder to colossalai/ * minor fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * gptj sp fix * remove redundancies from pre-commit * minor fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Signed-off-by: hugo-syn <hugo.vincent@synacktiv.com> Co-authored-by: Jianghai <72591262+CjhHa1@users.noreply.github.com> Co-authored-by: Bin Jia <45593998+FoolPlayer@users.noreply.github.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: cuiqing.li <lixx336@gmail.com> Co-authored-by: Yuanchen <70520919+chengeharrison@users.noreply.github.com> Co-authored-by: Xu Yuanchen <yuanchen.xu00@gmail.com> Co-authored-by: littsk <1214689160@qq.com> Co-authored-by: Baizhou Zhang <eddiezhang@pku.edu.cn> Co-authored-by: ppt0011 <143150326+ppt0011@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: Xuanlei Zhao <43881818+oahzxl@users.noreply.github.com> Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: github-actions <github-actions@github.com> Co-authored-by: Wenhao Chen <cwher@outlook.com> Co-authored-by: Jun Gao <imgaojun@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: Xu Kai <xukai16@foxmail.com> Co-authored-by: Zian(Andy) Zheng <62330719+Orion-Zheng@users.noreply.github.com> Co-authored-by: digger yu <digger-yu@outlook.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com> Co-authored-by: Xu Kai <xukai16@foxamil.com> Co-authored-by: Orion-Zheng <zheng_zian@u.nus.edu> Co-authored-by: Elsa Granger <zeyugao@outlook.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: Orion-Zheng <zhengzian@u.nus.edu> Co-authored-by: Pengtai Xu <henryxu880@gmail.com> Co-authored-by: eric8607242 <e0928021388@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Michelle <97082656+MichelleMa8@users.noreply.github.com> Co-authored-by: Camille Zhong <44392324+Camille7777@users.noreply.github.com> Co-authored-by: BlueRum <70618399+ht-zhou@users.noreply.github.com> Co-authored-by: Tong Li <tong.li352711588@gmail.com> Co-authored-by: JIMMY ZHAO <knightyzhao@gmail.com> Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: Desperado-Jia <502205863@qq.com> Co-authored-by: 李文军 <40464906+liwenjuna@users.noreply.github.com> Co-authored-by: yixiaoer <miyaku@yixiaoer.sg> Co-authored-by: CZYCW <czyczf@163.com> Co-authored-by: Stephan Kölker <stephankoe@users.noreply.github.com> Co-authored-by: QinLuo <eric.x.sun@gmail.com> Co-authored-by: MickeyCHAN <76671016+danyow-cheung@users.noreply.github.com> Co-authored-by: Luo Yihang <luo_yihang@outlook.com> Co-authored-by: Dongruixuan Li <dongruixuan@hotmail.com> Co-authored-by: hugo-syn <61210734+hugo-syn@users.noreply.github.com> Co-authored-by: Youngon <Youngon_wyl@163.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Insu Jang <insujang@umich.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
934 lines
42 KiB
Python
934 lines
42 KiB
Python
import itertools
|
|
from collections import OrderedDict
|
|
from contextlib import nullcontext
|
|
from functools import partial
|
|
from typing import Dict, Iterable, Iterator, List, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed import ProcessGroup
|
|
from torch.distributed.distributed_c10d import _get_default_group
|
|
|
|
from colossalai.accelerator import get_accelerator
|
|
from colossalai.checkpoint_io.utils import StateDictSharder, gather_distributed_param
|
|
from colossalai.interface import ModelWrapper
|
|
from colossalai.lazy import LazyTensor
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.tensor.colo_parameter import ColoParameter
|
|
from colossalai.tensor.d_tensor import (
|
|
distribute_tensor,
|
|
distribute_tensor_with_customization,
|
|
get_device_mesh,
|
|
get_global_shape,
|
|
get_sharding_spec,
|
|
init_as_dtensor,
|
|
init_tensor_as_customization_distributed,
|
|
is_customized_distributed_tensor,
|
|
is_distributed_tensor,
|
|
)
|
|
from colossalai.tensor.padded_tensor import (
|
|
init_as_padded_tensor,
|
|
is_padded_tensor,
|
|
to_padded_tensor,
|
|
to_unpadded_tensor,
|
|
)
|
|
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
|
|
from colossalai.utils import _cast_float, free_storage, is_ddp_ignored
|
|
|
|
from .chunk import Chunk, ChunkManager, TensorState, init_chunk_manager
|
|
from .gemini_hook import GeminiZeROHook
|
|
from .gemini_mgr import GeminiManager
|
|
from .memory_tracer import MemStats, OrderedParamGenerator
|
|
from .utils import get_temp_total_chunk_on_cuda
|
|
|
|
try:
|
|
from torch.nn.modules.module import _EXTRA_STATE_KEY_SUFFIX, _IncompatibleKeys
|
|
except ImportError:
|
|
_EXTRA_STATE_KEY_SUFFIX = "_extra_state"
|
|
|
|
__all__ = [
|
|
"GeminiDDP",
|
|
]
|
|
|
|
|
|
class GeminiDDP(ModelWrapper):
|
|
"""ZeRO DDP.
|
|
Warning: Nested GeminiDDP is not supported now.
|
|
It is designed to be used with ChunkManager and GeminiManager.
|
|
For more details, see the API reference of ``ChunkManager`` and ``GeminiManager``.
|
|
|
|
Args:
|
|
module (torch.nn.Module): Module to apply ZeRO-DP.
|
|
gemini_manager (GeminiManager): Manages the chunk manager and heterogeneous memory space.
|
|
For more details, see the API reference of ``GeminiManager``.
|
|
pin_memory (bool): Chunks on CPU Memory use pin-memory.
|
|
force_outputs_fp32 (bool): If set to True, outputs will be fp32. Otherwise, outputs will be fp16.
|
|
Defaults to False.
|
|
strict_ddp_mode (bool): If set to True, there is no tensor sharding, each tensor is replicated.
|
|
Defaults to False. Users can set it to True, when they clearly know that they only need DDP.
|
|
scatter_after_inference (bool): If set to True, the model will be scattered after inference. This will save memory but slow down the consecutive inference.
|
|
mixed_precision (torch.dtype): If set to torch.float16, the model will be trained in fp16. Otherwise, the model will be trained in bf16. Defaults to torch.float16.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
module: torch.nn.Module,
|
|
chunk_config_dict: Optional[dict] = None,
|
|
chunk_init_device: torch.device = torch.device("cpu"),
|
|
placement_policy: str = "static",
|
|
enable_gradient_accumulation: bool = False,
|
|
shard_param_frac: float = 1.0, # only for static placement
|
|
offload_optim_frac: float = 0.0, # only for static placement
|
|
offload_param_frac: float = 0.0, # only for static placement
|
|
warmup_non_model_data_ratio: float = 0.8, # only for auto placement
|
|
steady_cuda_cap_ratio: float = 0.9, # only for auto placement
|
|
search_range_m: int = 32, # chunk search options
|
|
hidden_dim: Optional[int] = None, # chunk search options
|
|
min_chunk_size_m: float = 32, # chunk search options
|
|
pin_memory: bool = False,
|
|
force_outputs_fp32: bool = False,
|
|
strict_ddp_mode: bool = False,
|
|
scatter_after_inference: bool = True,
|
|
mixed_precision: torch.dtype = torch.float16,
|
|
zero_group: Optional[ProcessGroup] = None,
|
|
memstats: Optional[MemStats] = None, # genimi memory stats
|
|
master_weights: bool = True,
|
|
extra_dp_group: Optional[ProcessGroup] = None,
|
|
verbose: bool = False,
|
|
) -> None:
|
|
assert mixed_precision in (torch.float16, torch.bfloat16)
|
|
if chunk_config_dict is not None:
|
|
self.chunk_manager = ChunkManager(chunk_config_dict, chunk_init_device)
|
|
else:
|
|
# some ugly hotfix for the compatibility with Lightning
|
|
if search_range_m is None:
|
|
search_range_m = 32
|
|
self.chunk_manager = init_chunk_manager(
|
|
model=module,
|
|
init_device=chunk_init_device,
|
|
hidden_dim=hidden_dim,
|
|
search_range_m=search_range_m,
|
|
min_chunk_size_m=min_chunk_size_m,
|
|
strict_ddp_flag=strict_ddp_mode,
|
|
process_group=zero_group,
|
|
verbose=verbose,
|
|
)
|
|
self.gemini_manager = GeminiManager(
|
|
placement_policy,
|
|
self.chunk_manager,
|
|
memstats,
|
|
shard_param_frac=shard_param_frac,
|
|
offload_optim_frac=offload_optim_frac,
|
|
offload_param_frac=offload_param_frac,
|
|
warmup_non_model_data_ratio=warmup_non_model_data_ratio,
|
|
steady_cuda_cap_ratio=steady_cuda_cap_ratio,
|
|
)
|
|
self.force_outputs_fp32 = force_outputs_fp32
|
|
self.param_op_hook = GeminiZeROHook(self.gemini_manager)
|
|
self.fp32_params: List[torch.Tensor] = list()
|
|
self.fp16_params: List[ColoParameter] = list()
|
|
self.overflow_counter = 0
|
|
self.grads_device: Dict[torch.Tensor, torch.device] = dict()
|
|
self.param2name: Dict[nn.Parameter, str] = dict()
|
|
self.name2param: Dict[str, nn.Parameter] = dict()
|
|
self.scatter_after_inference = scatter_after_inference
|
|
self.mixed_precision = mixed_precision
|
|
self.zero_group = zero_group or _get_default_group()
|
|
self.extra_dp_group = extra_dp_group
|
|
|
|
self.reuse_fp16_chunk = master_weights
|
|
self.master_weights = master_weights
|
|
|
|
self.enable_gradient_accumulation = enable_gradient_accumulation
|
|
if self.enable_gradient_accumulation:
|
|
self.reuse_fp16_chunk = False
|
|
self.accumulating_grads = False # Whether model is accumulating gradients
|
|
|
|
self._logger = get_dist_logger()
|
|
|
|
if self.gemini_manager._premade_memstats_:
|
|
# build chunk in param runtime visited order.
|
|
param_order = self.gemini_manager.memstats()._param_runtime_order
|
|
else:
|
|
# build chunk in param initialized order.
|
|
# Note: in this way, it can not get filter unused params during runtime.
|
|
param_order = OrderedParamGenerator()
|
|
for p in module.parameters():
|
|
param_order.append(p)
|
|
|
|
for name, param in module.named_parameters():
|
|
self.param2name[param] = name
|
|
for m_name, m_var in module.named_modules():
|
|
for p_name, p_var in m_var.named_parameters(recurse=False):
|
|
param_name = m_name + "." + p_name if m_name else p_name
|
|
self.name2param[param_name] = p_var
|
|
|
|
self._init_chunks(
|
|
param_order=param_order,
|
|
strict_ddp_mode=strict_ddp_mode,
|
|
cpu_offload=not (self.gemini_manager.policy_name == "static" and offload_param_frac == 0),
|
|
pin_memory=pin_memory,
|
|
)
|
|
super().__init__(module)
|
|
self._non_persistent_buffers_set = self._get_non_persistent_buffers_set(module)
|
|
self._cast_buffers()
|
|
# register grad hook
|
|
for p in module.parameters():
|
|
if is_ddp_ignored(p):
|
|
continue
|
|
if p.requires_grad:
|
|
p.register_hook(partial(self.grad_handle, p))
|
|
|
|
def parameters(self, recurse: bool = True):
|
|
return self.module.parameters(recurse)
|
|
|
|
def named_parameters(self, prefix: str = "", recurse: bool = True):
|
|
return self.module.named_parameters(prefix, recurse)
|
|
|
|
def named_buffers(self, prefix: str = "", recurse: bool = True):
|
|
return self.module.named_buffers(prefix, recurse)
|
|
|
|
def named_children(self):
|
|
return self.module.named_children()
|
|
|
|
def named_modules(
|
|
self, memo: Optional[Set[torch.nn.Module]] = None, prefix: str = "", remove_duplicate: bool = True
|
|
):
|
|
return self.module.named_modules(memo, prefix, remove_duplicate)
|
|
|
|
@staticmethod
|
|
def set_params_to_ignore(params_to_ignore: Iterable[torch.Tensor]) -> None:
|
|
"""Sets parameters to be ignored by DDP.
|
|
This method must be called before initializing ColoDDP.
|
|
|
|
Example:
|
|
>>> params_to_ignore = []
|
|
>>> for p in module.parameters():
|
|
>>> if should_ignore(p):
|
|
>>> params_to_ignore.append(p)
|
|
>>> ColoDDP.set_params_to_ignore(params_to_ignore)
|
|
>>> module = ColoDDP(module)
|
|
|
|
Args:
|
|
params_to_ignore (Iterable[torch.Tensor]): A list of parameters to be ignored.
|
|
"""
|
|
for p in params_to_ignore:
|
|
p._ddp_to_ignore = True
|
|
|
|
def _get_non_persistent_buffers_set(
|
|
self, module, memo: Optional[Set[nn.Module]] = None, prefix: str = "", remove_duplicate: bool = True
|
|
):
|
|
r"""
|
|
Args:
|
|
memo: a memo to store the set of modules already added to the result
|
|
prefix: a prefix that will be added to the name of the module
|
|
remove_duplicate: whether to remove the duplicated module instances in the result
|
|
or not
|
|
"""
|
|
|
|
if memo is None:
|
|
memo = set()
|
|
self_non_persistent_set = set()
|
|
if module not in memo:
|
|
if remove_duplicate:
|
|
memo.add(module)
|
|
self_non_persistent_set = set(
|
|
map(lambda key: prefix + ("." if prefix else "") + key, module._non_persistent_buffers_set)
|
|
)
|
|
for name, sub_module in module._modules.items():
|
|
if sub_module is None:
|
|
continue
|
|
submodule_prefix = prefix + ("." if prefix else "") + name
|
|
child_non_persistent_set = self._get_non_persistent_buffers_set(
|
|
sub_module, memo, submodule_prefix, remove_duplicate
|
|
)
|
|
self_non_persistent_set = set.union(self_non_persistent_set, child_non_persistent_set)
|
|
return self_non_persistent_set
|
|
|
|
def _post_forward(self):
|
|
"""This function is only triggered for inference."""
|
|
access_list = list(self.chunk_manager.accessed_chunks)
|
|
# we need to scatter all accessed chunks and move them to their original places
|
|
for chunk in access_list:
|
|
if chunk.keep_gathered:
|
|
self.chunk_manager.fake_release_chunk(chunk)
|
|
else:
|
|
assert chunk.can_release
|
|
self.chunk_manager.release_chunk(chunk)
|
|
first_param = next(iter(chunk.tensors_info))
|
|
self.chunk_manager.move_chunk(chunk, self.grads_device[first_param])
|
|
assert self.chunk_manager.accessed_mem == 0
|
|
|
|
def forward(self, *args, **kwargs):
|
|
# check whether we are in a inference mode
|
|
grad_flag = torch.is_grad_enabled()
|
|
if not grad_flag:
|
|
assert (
|
|
not self.gemini_manager.need_warmup or not self.gemini_manager.is_warmup()
|
|
), "You should run a completed iteration as your warmup iter"
|
|
|
|
args, kwargs = _cast_float(args, self.mixed_precision), _cast_float(kwargs, self.mixed_precision)
|
|
self.module.zero_grad(set_to_none=True)
|
|
if not grad_flag:
|
|
outputs = self._inference_forward(*args, **kwargs)
|
|
else:
|
|
self.gemini_manager.pre_iter(*args)
|
|
with ColoParamOpHookManager.use_hooks(self.param_op_hook):
|
|
outputs = self.module(*args, **kwargs)
|
|
|
|
if self.force_outputs_fp32:
|
|
return _cast_float(outputs, torch.float)
|
|
return outputs
|
|
|
|
def _inference_forward(self, *args, **kwargs):
|
|
"""This function is only triggered for inference."""
|
|
fwd_ctx = ColoParamOpHookManager.use_hooks(self.param_op_hook)
|
|
if not self.scatter_after_inference:
|
|
# gather all chunks
|
|
for chunk in self.chunk_manager.get_chunks(self.fp16_params):
|
|
self.chunk_manager.access_chunk(chunk)
|
|
fwd_ctx = nullcontext()
|
|
with fwd_ctx:
|
|
outputs = self.module(*args, **kwargs)
|
|
if self.scatter_after_inference:
|
|
# scatter chunks
|
|
self._post_forward()
|
|
# reset all recorded attributes
|
|
self.gemini_manager.reset_attributes()
|
|
return outputs
|
|
|
|
def _setup_grads_ptr(self):
|
|
for p in self.module.parameters():
|
|
if is_ddp_ignored(p):
|
|
continue
|
|
p.grad = None
|
|
|
|
def _pre_backward(self):
|
|
# set a visit label for all parameters
|
|
# the label is used to check whether the parameter is correctly reduced
|
|
for param in self.param2name:
|
|
if not is_ddp_ignored(param):
|
|
setattr(param, "_gemini_reduced", False)
|
|
|
|
def _post_backward(self):
|
|
if self.chunk_manager.accessed_mem != 0:
|
|
error_params = ["Reduction failed at followed parameters:"]
|
|
for param in self.param2name:
|
|
if not is_ddp_ignored(param) and not getattr(param, "_gemini_reduced"):
|
|
error_params.append(self.param2name[param])
|
|
error_str = "\n\t".join(error_params)
|
|
raise RuntimeError(
|
|
"ZERO DDP error: the synchronization of gradients doesn't exit properly.",
|
|
"The most possible reason is that the model is not compatible with GeminiDDP.\n",
|
|
f"{error_str}",
|
|
)
|
|
self._setup_grads_ptr()
|
|
if self.enable_gradient_accumulation and not self.accumulating_grads:
|
|
self.accumulating_grads = True # Turn on the state of gradient accumulation.
|
|
self._logger.debug(
|
|
f"comp cuda demand time: {self.gemini_manager._comp_cuda_demand_time}, layout time: {self.gemini_manager._layout_time}, evict time: {self.gemini_manager._evict_time}, CPU->CUDA vol: {self.gemini_manager._h2d_volume}B, CUDA->CPU vol: {self.gemini_manager._d2h_volume}"
|
|
)
|
|
self.gemini_manager.post_iter()
|
|
|
|
def backward(self, loss: torch.Tensor):
|
|
self._pre_backward()
|
|
with self.param_op_hook.switch_to_backward(), ColoParamOpHookManager.use_hooks(self.param_op_hook):
|
|
loss.backward()
|
|
self._post_backward()
|
|
|
|
def backward_by_grad(self, tensor, grad):
|
|
raise RuntimeError("Gemini is not compatible with pipeline. backward_by_grad shoudn't be called in Gemini.")
|
|
|
|
def grad_handle(self, p, grad):
|
|
setattr(p, "_gemini_reduced", True)
|
|
empty_grad = torch.empty_like(grad)
|
|
free_storage(empty_grad)
|
|
with torch._C.DisableTorchFunction():
|
|
chunk = self.chunk_manager.get_chunk(p)
|
|
if chunk.tensors_info[p].state != TensorState.HOLD_AFTER_BWD:
|
|
raise RuntimeError(
|
|
f"Parameter `{self.param2name[p]}` failed at the gradient reduction. "
|
|
"Some unsupported torch function is operated upon this parameter."
|
|
)
|
|
grad_chunk = chunk
|
|
if not self.reuse_fp16_chunk:
|
|
if not self.accumulating_grads:
|
|
grad_chunk = self.chunk_manager.init_grad_chunk(chunk)
|
|
else:
|
|
assert chunk.grad_chunk is not None
|
|
if chunk.grad_chunk not in self.chunk_manager.accessed_chunks:
|
|
grad_chunk = self.chunk_manager.rearrange_accumulated_grad_chunk(chunk)
|
|
else:
|
|
grad_chunk = chunk.grad_chunk
|
|
chunk.grad_chunk.l2_norm = None
|
|
|
|
# hold -> compute -> hold after bwd
|
|
grad_chunk.tensor_trans_state(p, TensorState.COMPUTE)
|
|
grad_chunk.tensor_trans_state(p, TensorState.HOLD_AFTER_BWD)
|
|
# fp16 param chunk: hold after bwd -> ready for reduce -> hold
|
|
chunk.tensor_trans_state(p, TensorState.READY_FOR_REDUCE)
|
|
chunk.tensor_trans_state(p, TensorState.HOLD)
|
|
|
|
grad_chunk.tensor_trans_state(p, TensorState.READY_FOR_REDUCE)
|
|
if not self.accumulating_grads:
|
|
grad_chunk.copy_tensor_to_chunk_slice(p, grad, update_ptr=self.reuse_fp16_chunk)
|
|
else:
|
|
grad_chunk.add_tensor_to_chunk_slice(p, grad)
|
|
reduced = self.chunk_manager.reduce_chunk(grad_chunk)
|
|
if reduced:
|
|
if not self.reuse_fp16_chunk:
|
|
if chunk.keep_gathered:
|
|
self.chunk_manager.fake_release_chunk(chunk)
|
|
else:
|
|
self.chunk_manager.release_chunk(chunk)
|
|
if grad_chunk.is_gathered:
|
|
grad_chunk.cuda_global_chunk.div_(chunk.pg_size)
|
|
if self.extra_dp_group is not None:
|
|
grad_chunk.cuda_global_chunk.div_(chunk.extra_dp_size)
|
|
else:
|
|
grad_chunk.cuda_shard.div_(chunk.pg_size)
|
|
if self.extra_dp_group is not None:
|
|
grad_chunk.cuda_shard.div_(chunk.extra_dp_size)
|
|
# check overflow elements
|
|
self.overflow_counter += grad_chunk.has_inf_or_nan
|
|
# record l2 norm for gradient clipping. flag is bound to fp16 chunk
|
|
if chunk.l2_norm_flag:
|
|
grad_chunk.set_l2_norm()
|
|
self.chunk_manager.move_chunk(grad_chunk, self.grads_device[p], force_copy=True)
|
|
if not (self.master_weights) or (self.enable_gradient_accumulation):
|
|
self.chunk_manager.move_chunk(chunk, self.grads_device[p], force_copy=True)
|
|
return empty_grad
|
|
|
|
def zero_grad(self, set_to_none: bool = False) -> None:
|
|
self.module.zero_grad(set_to_none=True)
|
|
|
|
def set_chunk_grad_device(self, chunk: Chunk, device: torch.device) -> None:
|
|
for tensor in chunk.get_tensors():
|
|
self.grads_device[tensor] = device
|
|
|
|
def state_dict(self, destination=None, prefix="", keep_vars=False, only_rank_0: bool = True):
|
|
"""Returns a dictionary containing a whole state of the module.
|
|
|
|
Both parameters and persistent buffers (e.g. running averages) are included.
|
|
Keys are corresponding parameter and buffer names.
|
|
Parameters and buffers set to ``None`` are not included.
|
|
|
|
Warning: The non strict state dict would ignore the parameters if the tensors of the parameters
|
|
are shared with other parameters which have been included in the dictionary.
|
|
When you need to load the state dict, you should set the argument `strict` to False.
|
|
|
|
Returns:
|
|
dict:
|
|
a dictionary containing a whole state of the module
|
|
"""
|
|
if destination is None:
|
|
destination = OrderedDict()
|
|
destination._metadata = OrderedDict()
|
|
destination._metadata[prefix[:-1]] = local_metadata = dict(version=self._version)
|
|
self._save_to_state_dict(destination, prefix, keep_vars, only_rank_0)
|
|
|
|
for hook in self._state_dict_hooks.values():
|
|
hook_result = hook(self, destination, prefix, local_metadata)
|
|
if hook_result is not None:
|
|
destination = hook_result
|
|
return destination
|
|
|
|
def _get_chunk_to_save_data(self, chunk: Chunk, only_rank_0: bool) -> Dict:
|
|
"""
|
|
get gathered chunk content.
|
|
|
|
Args:
|
|
chunk (Chunk): a chunk
|
|
only_rank_0 (bool): whether to only save data on rank 0
|
|
|
|
Returns:
|
|
Dict: a dict whose key is param name and value is param with correct payload
|
|
"""
|
|
# save parameters
|
|
chunk_to_save_data = dict()
|
|
temp_chunk = get_temp_total_chunk_on_cuda(chunk, self.mixed_precision)
|
|
|
|
for tensor, tensor_info in chunk.tensors_info.items():
|
|
record_tensor = torch.empty([0])
|
|
record_flag = (not only_rank_0) | (dist.get_rank(chunk.torch_pg) == 0)
|
|
if record_flag:
|
|
record_tensor = temp_chunk[tensor_info.offset : tensor_info.end].view(tensor.shape).to(tensor.device)
|
|
if is_distributed_tensor(tensor):
|
|
global_shape = get_global_shape(tensor)
|
|
device_mesh = get_device_mesh(tensor)
|
|
shard_spec = get_sharding_spec(tensor)
|
|
record_tensor = init_as_dtensor(
|
|
record_tensor, device_mesh=device_mesh, sharding_spec=shard_spec, global_shape=global_shape
|
|
)
|
|
elif is_customized_distributed_tensor(tensor):
|
|
init_tensor_as_customization_distributed(
|
|
record_tensor, shard_fn=tensor.shard_fn, gather_fn=tensor.gather_fn
|
|
)
|
|
record_tensor = gather_distributed_param(record_tensor, keep_vars=False).cpu()
|
|
if is_padded_tensor(tensor):
|
|
record_tensor = init_as_padded_tensor(
|
|
record_tensor, tensor._current_length, tensor._origin_length, tensor._padding_dim
|
|
)
|
|
record_tensor = to_unpadded_tensor(record_tensor)
|
|
|
|
assert tensor not in chunk_to_save_data
|
|
chunk_to_save_data[tensor] = record_tensor
|
|
|
|
del temp_chunk
|
|
return chunk_to_save_data
|
|
|
|
def _get_param_to_save_data(self, param_list: List[torch.nn.Parameter], only_rank_0: bool) -> Dict:
|
|
"""
|
|
get param content from chunks.
|
|
|
|
Args:
|
|
param_list (_type_): a list of torch.nn.Parameters
|
|
only_rank_0 (_type_): _description_
|
|
|
|
Returns:
|
|
Dict: a dict whose key is param name and value is param with correct payload
|
|
"""
|
|
# save parameters
|
|
param_to_save_data = dict()
|
|
chunk_list = self.chunk_manager.get_chunks(param_list)
|
|
for chunk in chunk_list:
|
|
param_to_save_data.update(self._get_chunk_to_save_data(chunk, only_rank_0))
|
|
return param_to_save_data
|
|
|
|
def _save_to_state_dict(self, destination, prefix, keep_vars, only_rank_0=True):
|
|
r"""Saves module state to `destination` dictionary, containing a state
|
|
of the module, but not its descendants. This is called on every
|
|
submodule in :meth:`~torch.nn.Module.state_dict`.
|
|
|
|
In rare cases, subclasses can achieve class-specific behavior by
|
|
overriding this method with custom logic.
|
|
|
|
Args:
|
|
destination (dict): a dict where state will be stored
|
|
prefix (str): the prefix for parameters and buffers used in this
|
|
module
|
|
"""
|
|
assert keep_vars is False, "`state_dict` with parameter, `keep_vars=True`, is not supported now."
|
|
|
|
# get copies of fp32 parameters in CPU
|
|
# as memory of fp16_params may be reused by grad, it's not reliable, we should use fp32_params and convert to fp16
|
|
params = self.fp32_params if self.reuse_fp16_chunk else self.fp16_params
|
|
param_to_save_data = self._get_param_to_save_data(params, only_rank_0)
|
|
# get the mapping between copies and fp16 parameters
|
|
p_mapping = dict()
|
|
if self.reuse_fp16_chunk:
|
|
for p, fp32_p in zip(self.fp16_params, self.fp32_params):
|
|
name = self.param2name[p]
|
|
assert fp32_p in param_to_save_data, "Parameter '{}' is neglected in the chunk list".format(name)
|
|
record_parameter = param_to_save_data[fp32_p]
|
|
p_mapping[p] = record_parameter
|
|
else:
|
|
p_mapping = param_to_save_data
|
|
for name, param in self.name2param.items():
|
|
if param is not None:
|
|
if is_ddp_ignored(param):
|
|
# deal with ddp ignored parameters
|
|
destination[prefix + name] = param if keep_vars else param.detach()
|
|
else:
|
|
if is_padded_tensor(p_mapping[param]):
|
|
p_mapping[param] = to_unpadded_tensor(p_mapping[param])
|
|
destination[prefix + name] = p_mapping[param]
|
|
del p_mapping
|
|
del param_to_save_data
|
|
|
|
# save all buffers
|
|
for name, buf in self.named_buffers():
|
|
if buf is not None and name not in self._non_persistent_buffers_set:
|
|
destination[prefix + name] = buf if keep_vars else buf.detach()
|
|
# save extra states
|
|
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
|
if (
|
|
getattr(self.__class__, "get_extra_state", torch.nn.Module.get_extra_state)
|
|
is not torch.nn.Module.get_extra_state
|
|
):
|
|
destination[extra_state_key] = self.get_extra_state()
|
|
|
|
def load_state_dict(self, state_dict: "OrderedDict[str, torch.Tensor]", strict: bool = True):
|
|
r"""Copies parameters and buffers from :attr:`state_dict` into
|
|
this module and its descendants. If :attr:`strict` is ``True``, then
|
|
the keys of :attr:`state_dict` must exactly match the keys returned
|
|
by this module's :meth:`~torch.nn.Module.state_dict` function.
|
|
|
|
Args:
|
|
state_dict (dict): a dict containing parameters and
|
|
persistent buffers.
|
|
strict (bool, optional): whether to strictly enforce that the keys
|
|
in :attr:`state_dict` match the keys returned by this module's
|
|
:meth:`~torch.nn.Module.state_dict` function. Default: ``True``
|
|
|
|
Returns:
|
|
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
|
|
* **missing_keys** is a list of str containing the missing keys
|
|
* **unexpected_keys** is a list of str containing the unexpected keys
|
|
|
|
Note:
|
|
If a parameter or buffer is registered as ``None`` and its corresponding key
|
|
exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a
|
|
``RuntimeError``.
|
|
"""
|
|
missing_keys: List[str] = []
|
|
unexpected_keys: List[str] = []
|
|
error_msgs: List[str] = []
|
|
|
|
# copy state_dict so _load_from_state_dict can modify it
|
|
metadata = getattr(state_dict, "_metadata", None)
|
|
state_dict = state_dict.copy()
|
|
if metadata is not None:
|
|
# mypy isn't aware that "_metadata" exists in state_dict
|
|
state_dict._metadata = metadata # type: ignore[attr-defined]
|
|
|
|
prefix = ""
|
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
|
self._load_from_state_dict(state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
|
|
|
if strict:
|
|
if len(unexpected_keys) > 0:
|
|
error_msgs.insert(
|
|
0,
|
|
"Unexpected key(s) in state_dict: {}. ".format(
|
|
", ".join('"{}"'.format(k) for k in unexpected_keys)
|
|
),
|
|
)
|
|
if len(missing_keys) > 0:
|
|
error_msgs.insert(
|
|
0, "Missing key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in missing_keys))
|
|
)
|
|
|
|
if len(error_msgs) > 0:
|
|
raise RuntimeError(
|
|
"Error(s) in loading state_dict for {}:\n\t{}".format(self.__class__.__name__, "\n\t".join(error_msgs))
|
|
)
|
|
return _IncompatibleKeys(missing_keys, unexpected_keys)
|
|
|
|
def _load_from_state_dict(
|
|
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
):
|
|
r"""Copies parameters and buffers from :attr:`state_dict` into only
|
|
this module, but not its descendants. This is called on every submodule
|
|
in :meth:`~torch.nn.Module.load_state_dict`. Metadata saved for this
|
|
module in input :attr:`state_dict` is provided as :attr:`local_metadata`.
|
|
For state dicts without metadata, :attr:`local_metadata` is empty.
|
|
Subclasses can achieve class-specific backward compatible loading using
|
|
the version number at `local_metadata.get("version", None)`.
|
|
|
|
.. note::
|
|
:attr:`state_dict` is not the same object as the input
|
|
:attr:`state_dict` to :meth:`~torch.nn.Module.load_state_dict`. So
|
|
it can be modified.
|
|
|
|
Args:
|
|
state_dict (dict): a dict containing parameters and
|
|
persistent buffers.
|
|
prefix (str): the prefix for parameters and buffers used in this
|
|
module
|
|
local_metadata (dict): a dict containing the metadata for this module.
|
|
See
|
|
strict (bool): whether to strictly enforce that the keys in
|
|
:attr:`state_dict` with :attr:`prefix` match the names of
|
|
parameters and buffers in this module
|
|
missing_keys (list of str): if ``strict=True``, add missing keys to
|
|
this list
|
|
unexpected_keys (list of str): if ``strict=True``, add unexpected
|
|
keys to this list
|
|
error_msgs (list of str): error messages should be added to this
|
|
list, and will be reported together in
|
|
:meth:`~torch.nn.Module.load_state_dict`
|
|
"""
|
|
|
|
for hook in self._load_state_dict_pre_hooks.values():
|
|
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
|
|
|
persistent_buffers = {k: v for k, v in self.named_buffers() if k not in self._non_persistent_buffers_set}
|
|
local_name_params = itertools.chain(self.named_parameters(), persistent_buffers.items())
|
|
local_state = {k: v for k, v in local_name_params if v is not None}
|
|
|
|
def load(
|
|
param_name,
|
|
dest_tensor,
|
|
copy_func,
|
|
source_device_mesh=None,
|
|
source_sharding_spec=None,
|
|
shard_fn=None,
|
|
gather_fn=None,
|
|
):
|
|
state_key = prefix + param_name
|
|
if state_key in state_dict:
|
|
input_param = state_dict[state_key]
|
|
|
|
global_shape = dest_tensor.shape
|
|
if source_device_mesh is not None and source_sharding_spec is not None:
|
|
global_shape = get_global_shape(dest_tensor)
|
|
|
|
if is_padded_tensor(dest_tensor):
|
|
padding_dim = dest_tensor._padding_dim
|
|
input_param = to_padded_tensor(input_param, global_shape[padding_dim], padding_dim)
|
|
|
|
if source_device_mesh is not None and source_sharding_spec is not None:
|
|
input_param = distribute_tensor(input_param, source_device_mesh, source_sharding_spec)
|
|
elif shard_fn is not None and gather_fn is not None:
|
|
input_param = distribute_tensor_with_customization(
|
|
input_param, shard_fn=shard_fn, gather_fn=gather_fn
|
|
)
|
|
|
|
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
|
|
if len(dest_tensor.shape) == 0 and len(input_param.shape) == 1:
|
|
input_param = input_param[0]
|
|
if input_param.shape != dest_tensor.shape:
|
|
# local shape should match the one in checkpoint
|
|
error_msgs.append(
|
|
"size mismatch for {}: copying a param with shape {} from checkpoint, "
|
|
"the shape in current model is {}.".format(state_key, input_param.shape, dest_tensor.shape)
|
|
)
|
|
return
|
|
try:
|
|
with torch.no_grad():
|
|
copy_func(input_param)
|
|
except Exception as ex:
|
|
error_msgs.append(
|
|
'While copying the parameter named "{}", '
|
|
"whose dimensions in the model are {} and "
|
|
"whose dimensions in the checkpoint are {}, "
|
|
"an exception occurred : {}.".format(state_key, dest_tensor.size(), input_param.size(), ex.args)
|
|
)
|
|
elif strict:
|
|
missing_keys.append(state_key)
|
|
|
|
def load_parameter(chunk_slice, data):
|
|
chunk_slice.copy_(data.flatten())
|
|
|
|
for name, param in self.named_parameters():
|
|
if is_ddp_ignored(param):
|
|
# deal with ddp ignored parameters
|
|
load(name, param, param.copy_)
|
|
|
|
fp32_to_name = dict()
|
|
for p, fp32_p in zip(self.fp16_params, self.fp32_params):
|
|
if p is not None:
|
|
name = self.param2name[p]
|
|
fp32_to_name[fp32_p] = name
|
|
|
|
params_to_load = self.fp32_params if self.reuse_fp16_chunk else self.fp16_params
|
|
chunk_list = self.chunk_manager.get_chunks(params_to_load)
|
|
for chunk in chunk_list:
|
|
temp_chunk = get_temp_total_chunk_on_cuda(chunk, self.mixed_precision)
|
|
|
|
for tensor, tensor_info in chunk.tensors_info.items():
|
|
source_device_mesh, source_sharding_spec, shard_fn, gather_fn = None, None, None, None
|
|
if is_distributed_tensor(tensor):
|
|
# shard the input param
|
|
source_device_mesh = get_device_mesh(tensor)
|
|
source_sharding_spec = get_sharding_spec(tensor)
|
|
elif is_customized_distributed_tensor(tensor):
|
|
shard_fn = tensor.shard_fn
|
|
gather_fn = tensor.gather_fn
|
|
|
|
parameter_name = fp32_to_name[tensor] if self.reuse_fp16_chunk else self.param2name[tensor]
|
|
parameter_slice = temp_chunk[tensor_info.offset : tensor_info.end]
|
|
load(
|
|
parameter_name,
|
|
tensor,
|
|
partial(load_parameter, parameter_slice),
|
|
source_device_mesh,
|
|
source_sharding_spec,
|
|
shard_fn,
|
|
gather_fn,
|
|
)
|
|
|
|
if chunk.is_gathered:
|
|
chunk.cuda_global_chunk.copy_(temp_chunk)
|
|
elif chunk.cuda_shard is not None:
|
|
chunk.cuda_shard.copy_(temp_chunk[chunk.shard_begin : chunk.shard_end])
|
|
else:
|
|
chunk.cpu_shard.copy_(temp_chunk[chunk.shard_begin : chunk.shard_end])
|
|
|
|
del temp_chunk
|
|
|
|
# sync running weights and master weights
|
|
if self.master_weights:
|
|
for loaded_chunk in chunk_list:
|
|
paired_chunk = loaded_chunk.paired_chunk
|
|
assert paired_chunk is not None
|
|
paired_chunk.payload.copy_(loaded_chunk.payload)
|
|
|
|
for name, buf in persistent_buffers.items():
|
|
if buf is not None:
|
|
load(name, buf, buf.copy_)
|
|
|
|
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
|
if (
|
|
getattr(self.__class__, "set_extra_state", torch.nn.Module.set_extra_state)
|
|
is not torch.nn.Module.set_extra_state
|
|
):
|
|
if extra_state_key in state_dict:
|
|
self.set_extra_state(state_dict[extra_state_key])
|
|
elif strict:
|
|
missing_keys.append(extra_state_key)
|
|
elif strict and (extra_state_key in state_dict):
|
|
unexpected_keys.append(extra_state_key)
|
|
|
|
if strict:
|
|
for key in state_dict.keys():
|
|
if key.startswith(prefix) and key != extra_state_key:
|
|
input_name = key[len(prefix) :]
|
|
if input_name not in local_state:
|
|
unexpected_keys.append(key)
|
|
|
|
def _init_chunks(self, param_order, strict_ddp_mode: bool, cpu_offload: bool, pin_memory: bool):
|
|
zero_world_size = dist.get_world_size(self.zero_group)
|
|
for p in param_order.generate():
|
|
self._preprocess_param(p)
|
|
assert type(p) is ColoParameter
|
|
|
|
# ignore the parameters with no gradient
|
|
if not p.requires_grad:
|
|
self.set_params_to_ignore([p])
|
|
|
|
# move ignored parameters to CUDA
|
|
if is_ddp_ignored(p):
|
|
p.data = p.data.to(device=get_accelerator().get_current_device(), dtype=self.mixed_precision)
|
|
continue
|
|
|
|
# create a fp16 parameter
|
|
p.data = p.data.to(self.mixed_precision)
|
|
# register the fp16 parameter
|
|
self.chunk_manager.register_tensor(
|
|
tensor=p,
|
|
group_type="fp16_param",
|
|
config_key=zero_world_size,
|
|
zero_group=self.zero_group,
|
|
extra_dp_group=self.extra_dp_group,
|
|
cpu_offload=cpu_offload,
|
|
pin_memory=pin_memory,
|
|
)
|
|
self.fp16_params.append(p)
|
|
|
|
if self.master_weights:
|
|
# create a fp32 parameter
|
|
fp32_p = p.clone()
|
|
fp32_p.data = fp32_p.data.float()
|
|
self.chunk_manager.register_tensor(
|
|
tensor=fp32_p,
|
|
group_type="fp32_param",
|
|
config_key=zero_world_size,
|
|
zero_group=self.zero_group,
|
|
extra_dp_group=self.extra_dp_group,
|
|
cpu_offload=cpu_offload,
|
|
pin_memory=pin_memory,
|
|
)
|
|
self.fp32_params.append(fp32_p)
|
|
|
|
self.chunk_manager.close_all_groups()
|
|
|
|
self.gemini_manager.setup_grads_device(self.fp16_params, self.grads_device)
|
|
|
|
# move master weights to corresponding device and setup paired chunks
|
|
# if no master weights, fp32_params should be empty and this loop will be skipped
|
|
for p, fp32_p in zip(self.fp16_params, self.fp32_params):
|
|
chunk_16 = self.chunk_manager.get_chunk(p)
|
|
chunk_32 = self.chunk_manager.get_chunk(fp32_p)
|
|
chunk_32.init_pair(chunk_16)
|
|
if chunk_32.device_type != self.grads_device[p].type:
|
|
self.chunk_manager.move_chunk(chunk_32, self.grads_device[p])
|
|
|
|
def _cast_buffers(self):
|
|
for buffer in self.module.buffers():
|
|
if isinstance(buffer, LazyTensor):
|
|
buffer.materialize()
|
|
buffer.data = buffer.to(get_accelerator().get_current_device())
|
|
if torch.is_floating_point(buffer):
|
|
buffer.data = buffer.to(self.mixed_precision)
|
|
|
|
def _preprocess_param(self, p: Union[nn.Parameter, ColoParameter, "LazyTensor"]) -> None:
|
|
"""Convert parameter to ColoParameter in-place.
|
|
Args:
|
|
p (Union[nn.Parameter, ColoParameter, LazyTensor]): parameter to be converted
|
|
"""
|
|
if type(p) is ColoParameter:
|
|
# model is initialized with ColoInitContext
|
|
return
|
|
requires_grad = p.requires_grad
|
|
if isinstance(p, LazyTensor):
|
|
# model is initialized with LazyInitContext
|
|
p.materialize()
|
|
p.__class__ = ColoParameter
|
|
p.__init__(p, requires_grad=requires_grad)
|
|
|
|
def state_dict_shard(
|
|
self,
|
|
prefix: str = "",
|
|
keep_vars: bool = False,
|
|
max_shard_size: int = 1024,
|
|
only_rank_0: bool = True,
|
|
) -> Iterator[Tuple[OrderedDict, int]]:
|
|
"""Returns dictionaries containing a whole state of the module one by one. The max size of dictionary shard is specified by ``max_shard_size``.
|
|
|
|
Both parameters and persistent buffers (e.g. running averages) are included.
|
|
Keys are corresponding parameter and buffer names.
|
|
Parameters and buffers set to ``None`` are not included.
|
|
|
|
Args:
|
|
prefix (str, optional): the prefix for parameters and buffers used in this
|
|
module. Defaults to ''.
|
|
keep_vars (bool, optional): whether to keep variables. Defaults to False.
|
|
max_shard_size (int, optional): max size of state dict shard (in MB). Defaults to 1024.
|
|
only_rank_0 (bool, optional): only get data on rank0. Defaults to True.
|
|
|
|
|
|
Yields:
|
|
Iterator[OrderedDict]: A generator of state dict shard
|
|
"""
|
|
sharder = StateDictSharder(max_shard_size)
|
|
|
|
# get the mapping between copies and fp16 parameters
|
|
fp16_to_fp32 = dict()
|
|
for p, fp32_p in zip(self.fp16_params, self.fp32_params):
|
|
fp16_to_fp32[p] = fp32_p
|
|
|
|
# key is fp32 param, and value is gathered param on CPU
|
|
gathered_param_buffer = dict()
|
|
for name, param in self.name2param.items():
|
|
if param is not None:
|
|
if is_ddp_ignored(param):
|
|
# deal with ddp ignored parameters
|
|
gathered_param = param if keep_vars else param.detach()
|
|
else:
|
|
# as memory of fp16 param may be reused, we should use fp32 param and then convert to fp16
|
|
param_to_save = fp16_to_fp32[param] if self.reuse_fp16_chunk else param
|
|
if param_to_save not in gathered_param_buffer:
|
|
chunk = self.chunk_manager.get_chunk(param_to_save)
|
|
gathered_param_buffer.update(self._get_chunk_to_save_data(chunk, only_rank_0))
|
|
gathered_param = gathered_param_buffer.pop(param_to_save)
|
|
|
|
block, block_size = sharder.append_param(prefix + name, gathered_param)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
del fp16_to_fp32
|
|
del gathered_param_buffer
|
|
|
|
# save all buffers
|
|
for name, buf in self.named_buffers():
|
|
if buf is not None and name not in self._non_persistent_buffers_set:
|
|
buffer = buf if keep_vars else buf.detach()
|
|
block, block_size = sharder.append_param(prefix + name, buffer)
|
|
if block is not None:
|
|
yield block, block_size
|
|
# save extra states
|
|
extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX
|
|
if (
|
|
getattr(self.__class__, "get_extra_state", torch.nn.Module.get_extra_state)
|
|
is not torch.nn.Module.get_extra_state
|
|
):
|
|
extra_state = self.get_extra_state()
|
|
block, block_size = sharder.append_param(extra_state_key, extra_state)
|
|
if block is not None:
|
|
yield block, block_size
|
|
|
|
yield sharder.current_block, sharder.current_block_size
|