ColossalAI/applications/Chat/coati/models/base/actor.py
Wenhao Chen 9d02590c9a
[chat] refactor actor class (#3968)
* refactor: separate log_probs fn from Actor forward fn

* refactor: separate generate fn from Actor class

* feat: update unwrap_model and get_base_model
* unwrap_model returns model not wrapped by Strategy
* get_base_model returns HF model for Actor, Critic and RewardModel

* feat: simplify Strategy.prepare

* style: remove get_base_model method of Actor

* perf: tokenize text in batches

* refactor: move calc_action_log_probs to utils of model

* test: update test with new forward fn

* style: rename forward fn args

* fix: do not unwrap model in save_model fn of naive strategy

* test: add gemini test for train_prompts

* fix: fix _set_default_generate_kwargs
2023-06-13 13:31:56 +08:00

37 lines
993 B
Python

from typing import Optional
import torch
import torch.nn as nn
from ..lora import LoRAModule
class Actor(LoRAModule):
"""
Actor model base class.
Args:
model (nn.Module): Actor Model.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self, model: nn.Module, lora_rank: int = 0, lora_train_bias: str = 'none') -> None:
super().__init__(lora_rank=lora_rank, lora_train_bias=lora_train_bias)
self.model = model
self.convert_to_lora()
def forward(self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
**model_kwargs, # HACK: `generate` method may pass more kwargs
) -> torch.Tensor:
"""Returns model output.
"""
output = self.model(
input_ids,
attention_mask=attention_mask,
**model_kwargs
)
return output