Files
ColossalAI/applications/ColossalEval/colossal_eval/dataset/agieval.py
flybird11111 0c10afd372 [FP8] rebase main (#5963)
* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* fp8 operators for compressed communication

cast_to_fp8, cast_from_fp8, all_reduce_fp8

* fix scaling algorithm in FP8 casting

* support fp8 communication in pipeline parallelism

* add fp8_communication flag in the script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* shardformer fp8

* fix rebase

* remove all to all

* fix shardformer fp8 communication training degradation

* [fp8] support all-gather flat tensor (#5932)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update low_level_optim.py

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 16:29:37 +08:00

267 lines
10 KiB
Python

# Adapted from https://github.com/ruixiangcui/AGIEval/blob/main/src/dataset_loader.py.
import ast
import glob
import os
from copy import deepcopy
from typing import Dict, List
import pandas as pd
from colossal_eval.utils import get_json_list
from colossalai.logging import DistributedLogger
from .base import BaseDataset
# define the datasets
english_qa_datasets = [
"lsat-ar",
"lsat-lr",
"lsat-rc",
"logiqa-en",
"sat-math",
"sat-en",
"aqua-rat",
"sat-en-without-passage",
"gaokao-english",
]
chinese_qa_datasets = [
"logiqa-zh",
"jec-qa-kd",
"jec-qa-ca",
"gaokao-chinese",
"gaokao-geography",
"gaokao-history",
"gaokao-biology",
"gaokao-chemistry",
"gaokao-physics",
"gaokao-mathqa",
]
english_cloze_datasets = ["math"]
chinese_cloze_datasets = ["gaokao-mathcloze"]
multi_choice_datasets = ["jec-qa-kd", "jec-qa-ca", "gaokao-physics", "gaokao-mathqa"]
math_output_datasets = {"gaokao-mathcloze", "math"}
default_inference_kwargs = {
"calculate_loss": True,
"all_classes": None,
"language": "Chinese",
"pretrain": False,
"max_new_tokens": 32,
}
def get_prompt(line: Dict, dataset_name: str, logger: DistributedLogger) -> Dict:
"""Modified from https://github.com/microsoft/AGIEval/blob/main/src/dataset_loader.py#L190"""
try:
all_classes = None
passage = line["passage"] if line["passage"] is not None else ""
if dataset_name in english_qa_datasets:
option_string = "ABCDEFG"
count = len(line["options"])
input = (
"Question: "
+ line["question"]
+ " "
+ "Choose from the following options: "
+ " ".join(line["options"])
+ "\n"
+ "Answer: "
)
all_classes = list(option_string[0:count])
elif dataset_name in chinese_qa_datasets:
option_string = "ABCDEFG"
count = len(line["options"])
input = (
"问题:" + line["question"] + " " + "从以下选项中选择:" + " ".join(line["options"]) + "\n" + "答案:"
)
all_classes = list(option_string[0:count])
elif dataset_name in english_cloze_datasets:
input = "Question: " + line["question"] + "\n" + "Answer: "
elif dataset_name in chinese_cloze_datasets:
input = "问题:" + line["question"] + "\n" + "答案:"
return {
"instruction": input if not passage else passage + "\n\n" + input,
"target": line["label"] if line["label"] else line["answer"],
}, all_classes
except NameError:
logger.info("Dataset not defined.")
# process few-shot raw_prompts
def combine_prompt(prompt_path, dataset_name, load_explanation=True, chat_mode=False):
demostrations = []
demostration_en = "Here are the answers for the problems in the exam."
demostration_zh = "以下是考试中各个问题的答案。"
if dataset_name in english_qa_datasets or dataset_name in english_cloze_datasets:
demostrations.append(demostration_en)
elif dataset_name in chinese_qa_datasets or dataset_name in chinese_cloze_datasets:
demostrations.append(demostration_zh)
skip_passage = False
if dataset_name == "sat-en-without-passage":
skip_passage = True
dataset_name = "sat-en"
# read the prompts by context and explanation
context_row = [0, 1, 3, 5, 7, 9]
explanation_row = [0, 2, 4, 6, 8, 10]
raw_prompts_context = pd.read_csv(
prompt_path, header=0, skiprows=lambda x: x not in context_row, keep_default_na=False
)
raw_prompts_explanation = pd.read_csv(
prompt_path, header=0, skiprows=lambda x: x not in explanation_row, keep_default_na=False
).replace(r"\n\n", "\n", regex=True)
contexts = []
for line in list(raw_prompts_context[dataset_name]):
if line:
# print(line)
contexts.append(ast.literal_eval(line))
explanations = [exp for exp in raw_prompts_explanation[dataset_name] if exp]
for idx, (con, exp) in enumerate(zip(contexts, explanations)):
passage = con["passage"] if con["passage"] is not None and not skip_passage else ""
question = con["question"]
options = con["options"] if con["options"] is not None else ""
label = con["label"] if con["label"] is not None else ""
answer = con["answer"] if "answer" in con and con["answer"] is not None else ""
if dataset_name in english_qa_datasets:
question_input = (
"Question: "
+ passage
+ " "
+ question
+ "\n"
+ "Choose from the following options: "
+ " ".join(options)
+ "\n"
+ "Answer: {}".format(label)
)
elif dataset_name in chinese_qa_datasets:
question_input = (
"问题:"
+ passage
+ " "
+ question
+ "\n"
+ "从以下选项中选择:"
+ " ".join(options)
+ "\n"
+ "答案:{}".format(label)
)
elif dataset_name in english_cloze_datasets:
question_input = "Question: ".format(idx + 1) + question + "\n" + "Answer: {}".format(answer)
elif dataset_name in chinese_cloze_datasets:
question_input = "问题:" + question + "\n" + "答案:{}".format(answer)
else:
raise ValueError(f"During loading few-sot examples, found unknown dataset: {dataset_name}")
if chat_mode:
demostrations.append((question_input,))
else:
demostrations.append(question_input)
return demostrations
class AGIEvalDataset(BaseDataset):
"""
Dataset wrapper for AGIEval dataset.
Data source: https://github.com/microsoft/AGIEval
This dataset class will convert the original dataset into the inference dataset.
A few dirty data needed to be manually corrected in the origin dataset:
Issue link: https://github.com/microsoft/AGIEval/issues/16
1. Invalid options in line 190 in gaokao-chemistry.jsonl.
2. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en-without-passage.jsonl.
3. Option D (They may increase in value as those same resources become rare on Earth.) missing in line 17 in sat-en.jsonl.
4. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en-without-passage.jsonl.
5. Option D (No, because the data do not indicate whether the honeybees had been infected with mites.) missing in line 57 in sat-en.jsonl.
6. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en-without-passage.jsonl.
7. Option D (Published theories of scientists who developed earlier models of the Venus flytrap) missing in line 98 in sat-en.jsonl.
8. Label is empty in line 212 in jec-qa-kd.jsonl. Content is also dirty.
9. Actually, gaokao-mathqa.jsonl is also a multi-choice dataset. See line 149 286 287.
"""
@staticmethod
def load(path: str, logger: DistributedLogger, few_shot: bool, *args, **kwargs) -> List[Dict]:
dataset = {"test": {}}
files = glob.glob(os.path.join(path, "*.jsonl"))
files.sort()
if few_shot:
prompt_path = os.path.join(path, "few_shot_prompts.csv")
for file in files:
dataset_name = os.path.basename(file)[0 : -len(".jsonl")]
few_shot_data = None
if few_shot:
# process demo once if it is few-shot-CoT
few_shot_data = combine_prompt(prompt_path, dataset_name, load_explanation=False, chat_mode=False)
dataset["test"][dataset_name] = {"data": []}
file_dir = os.path.join(path, file)
loaded_jsonl = get_json_list(file_dir)
# It's been tested that each data sample in one subcategory have same inference arguments.
_, all_classes = get_prompt(loaded_jsonl[0], dataset_name, logger)
inference_kwargs = deepcopy(default_inference_kwargs)
if all_classes is not None and dataset_name not in multi_choice_datasets:
inference_kwargs["all_classes"] = all_classes
if dataset_name in english_qa_datasets:
inference_kwargs["language"] = "English"
if dataset_name in chinese_qa_datasets:
inference_kwargs["language"] = "Chinese"
inference_kwargs["few_shot_data"] = few_shot_data
dataset["test"][dataset_name]["inference_kwargs"] = inference_kwargs
for line in loaded_jsonl:
info, all_classes = get_prompt(line, dataset_name, logger)
# Convert multi-choice answers to a single string.
# We will convert it back when evaluating.
# We do this because if target is a list, it should be only used for multiple target answers.
if dataset_name in multi_choice_datasets:
if isinstance(info["target"], str) and len(info["target"]) > 1:
# "gaokao-mathqa" actually contain multi-choice questions.
# This if clause is specially used for it.
info["target"] = "".join(info["target"].split())
else:
info["target"] = "".join(info["target"])
if isinstance(info["target"], list) and len(info["target"]) == 1:
info["target"] = info["target"][0]
data_sample = {
"dataset": "agieval",
"split": "test",
"category": dataset_name,
"instruction": info["instruction"],
"input": "",
"output": "",
"target": info["target"],
}
dataset["test"][dataset_name]["data"].append(data_sample)
return dataset