Files
ColossalAI/applications/ColossalEval/examples/dataset_evaluation/inference.py
flybird11111 0c10afd372 [FP8] rebase main (#5963)
* add SimPO

* fix dataloader

* remove debug code

* add orpo

* fix style

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix colossalai, transformers version

* fix torch colossalai version

* update transformers version

* [shardformer] DeepseekMoE support (#5871)

* [Feature] deepseek moe expert parallel implement

* [misc] fix typo, remove redundant file (#5867)

* [misc] fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] deepseek support & unit test

* [misc] remove debug code & useless print

* [misc] fix typos (#5872)

* [Feature] remove modeling file, use auto config. (#5884)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [Deepseek] remove redundant code (#5888)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [Feature/deepseek] resolve comment. (#5889)

* [misc] fix typos

* [Feature] deepseek support via auto model, remove modeling file

* [misc] delete useless file

* [misc] fix typos

* [misc] remove redundant code

* [misc] mv module replacement into if branch

* [misc] add some warning message and modify some code in unit test

* [misc] fix typos

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)

* Diffusion Model Inference support

* Stable Diffusion 3 Support

* pixartalpha support

* [HotFix] CI,import,requirements-test for #5838 (#5892)

* [Hot Fix] CI,import,requirements-test

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] Enable PP + SP for llama (#5868)

* fix cross-PP-stage position id length diff bug

* fix typo

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* use a one cross entropy func for all shardformer models

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)

* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint

* fix style

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix eval

* hotfix citation

* [zero] support all-gather overlap (#5898)

* [zero] support all-gather overlap

* [zero] add overlap all-gather flag

* [misc] fix typo

* [zero] update api

* fix orpo cross entropy loss

* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)

* Remove unnecessary calls to deepcopy

* Build DimSpec's difference dict only once

This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.

* Fix documentation of DimSpec's difference method

* [ShardFormer] fix qwen2 sp (#5903)

* [compatibility] support torch 2.2 (#5875)

* Support Pytorch 2.2.2

* keep build_on_pr file and update .compatibility

* fix object_to_tensor usage when torch>=2.3.0 (#5820)

* [misc] support torch2.3 (#5893)

* [misc] support torch2.3

* [devops] update compatibility ci

* [devops] update compatibility ci

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] add debug

* [devops] remove debug

* [devops] remove debug

* [release] update version (#5912)

* [plugin] support all-gather overlap for hybrid parallel (#5919)

* [plugin] fixed all-gather overlap support for hybrid parallel

* add kto

* fix style, add kto data sample

* [Examples] Add lazy init to OPT and GPT examples (#5924)

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [ColossalChat] Hotfix for ColossalChat (#5910)

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* add ignore and tiny llama

* fix path issue

* run style

* fix issue

* update bash

* fix ddp issue

* add Qwen 1.5 32B

* refactor tokenization

* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)

* cannot access local variable 'default_conversation' where it is not associated with a value

set default value for 'default_conversation'

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix test data

* refactor evaluation

* remove real data path

* remove real data path

* Add n_fused as an input from native_module (#5894)

* [FIX BUG] convert env param to int in (#5934)

* [Hotfix] Fix ZeRO typo #5936

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)

* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* fix style

* fix style

* fix style

* [shardformer] hotfix attn mask (#5945)

* [shardformer] hotfix attn mask (#5947)

* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)

* Distrifusion Support source

* comp comm overlap optimization

* sd3 benchmark

* pixart distrifusion bug fix

* sd3 bug fix and benchmark

* generation bug fix

* naming fix

* add docstring, fix counter and shape error

* add reference

* readme and requirement

* [zero] hotfix update master params (#5951)

* [release] update version (#5952)

* [Chat] Fix lora (#5946)

* fix merging

* remove filepath

* fix style

* Update README.md (#5958)

* [hotfix] Remove unused plan section (#5957)

* remove readme

* fix readme

* update

* [test] add mixtral for sequence classification

* [test] add mixtral transformer test

* [moe] fix plugin

* [test] mixtra pp shard test

* [chore] handle non member group

* [zero] solve hang

* [test] pass mixtral shardformer test

* [moe] implement transit between non moe tp and ep

* [zero] solve hang

* [misc] solve booster hang by rename the variable

* solve hang when parallel mode = pp + dp

* [moe] implement submesh initialization

* [moe] add mixtral dp grad scaling when not all experts are activated

* [chore] manually revert unintended commit

* [chore] trivial fix

* [chore] arg pass & remove drop token

* [test] add mixtral modelling test

* [moe] implement tp

* [moe] test deepseek

* [moe] clean legacy code

* [Feature] MoE Ulysses Support (#5918)

* moe sp support

* moe sp bug solve

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [chore] minor fix

* [moe] init moe plugin comm setting with sp

* moe sp + ep bug fix

* [moe] finalize test (no pp)

* [moe] full test for deepseek and mixtral (pp + sp to fix)

* [chore] minor fix after rebase

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [chore] solve moe ckpt test failure and some other arg pass failure

* [moe] remove ops

* [test] fix test: test_zero1_2

* [bug] fix: somehow logger hangs the program

* [moe] deepseek moe sp support

* [test] add check

* [deepseek] replace attn (a workaround for bug in transformers)

* [misc] skip redunant test

* [misc] remove debug/print code

* [moe] refactor mesh assignment

* Revert "[moe] implement submesh initialization"

This reverts commit 2f9bce6686.

* [chore] change moe_pg_mesh to private

* [misc] remove incompatible test config

* [misc] fix ci failure: change default value to false in moe plugin

* [misc] remove useless condition

* [chore] docstring

* [moe] remove force_overlap_comm flag and add warning instead

* [doc] add MoeHybridParallelPlugin docstring

* [moe] solve dp axis issue

* [chore] remove redundant test case, print string & reduce test tokens

* [feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [lora] lora support hybrid parallel plugin (#5956)

* lora support hybrid plugin

* fix

* fix

* fix

* fix

* fp8 operators for compressed communication

cast_to_fp8, cast_from_fp8, all_reduce_fp8

* fix scaling algorithm in FP8 casting

* support fp8 communication in pipeline parallelism

* add fp8_communication flag in the script

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix typo

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* shardformer fp8

* fix rebase

* remove all to all

* fix shardformer fp8 communication training degradation

* [fp8] support all-gather flat tensor (#5932)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix

* Update low_level_optim.py

---------

Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
2024-08-06 16:29:37 +08:00

276 lines
11 KiB
Python

import argparse
import copy
import os
from typing import Dict, List
import torch.distributed as dist
from colossal_eval import dataset, models, utils
from colossal_eval.dataset.base import DistributedDataset
from torch.utils.data import DataLoader, DistributedSampler
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.cluster import ProcessGroupMesh
from colossalai.logging import get_dist_logger
from colossalai.shardformer import ShardConfig
logger = get_dist_logger()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def rm_and_merge(
dp_size: int,
save_path: str,
model_names: List[str],
dataset_names: Dict[str, List],
dataset_classes: Dict[str, List],
) -> None:
"""
Remove inference result per rank and merge them into one file.
Args:
dp_size: Number of groups for data parallel.
save_path: The folder for storing inference results.
model_names: Names of models for inference.
dataset_names: Names of dataset for inference.
dataset_classes: Dataset class for different inference results. We need to save dataset class to smooth the evaluation process.
"""
for model_name in model_names:
for dataset_name, categories in dataset_names.items():
all_answers_with_dataset_class = {}
all_answers_with_dataset_class["dataset_class"] = dataset_classes[dataset_name]
all_answers = {}
for category in categories:
all_answers[category] = {"data": []}
answers = {"data": []}
for r in range(dp_size):
directory = os.path.join(
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
)
if not os.path.exists(directory):
raise Exception(
f"Directory {directory} not found. There may be an error during inference time."
)
else:
rank_answers = utils.jload(directory)
deduplidate_answers = [x for x in rank_answers["data"] if x not in answers["data"]]
answers["data"].extend(deduplidate_answers)
answers["inference_kwargs"] = rank_answers["inference_kwargs"]
for r in range(dp_size):
try:
directory = os.path.join(
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
)
os.remove(directory)
except Exception as e:
print(e)
print(len(answers["data"]))
all_answers[category] = answers
all_answers_with_dataset_class["inference_results"] = all_answers
logger.info(f"Save inference results of model {model_name} on dataset {dataset_name}.")
utils.jdump(
all_answers_with_dataset_class,
os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"),
)
logger.info(f"Save inference results of model {model_name} for all dataset.")
logger.info(f"Save inference results of all models for all dataset.")
def main(args):
colossalai.launch_from_torch(seed=42)
accelerator = get_accelerator()
world_size = dist.get_world_size()
rank = dist.get_rank()
DP_AXIS = 0
TP_AXIS = 1
dp_size = world_size // args.tp_size
if rank == 0:
logger.info("Setting TP and DP...")
logger.info(f"TP size: {args.tp_size}, DP size: {dp_size}")
if world_size % args.tp_size != 0:
raise Exception(
f"TP size is {args.tp_size} while world size is {world_size}! Please make sure world size is a multiple of TP size!"
)
pg_mesh = ProcessGroupMesh(dp_size, args.tp_size)
tp_group = pg_mesh.get_group_along_axis(TP_AXIS)
coordinates = pg_mesh._coord
dp_rank = coordinates[DP_AXIS]
tp_rank = coordinates[TP_AXIS]
shard_config = (
ShardConfig(
tensor_parallel_process_group=tp_group,
enable_tensor_parallelism=args.tp_size > 1,
parallel_output=False,
enable_all_optimization=True,
)
if args.tp_size > 1
else None
)
inference_data = {}
dataset_classes = {}
debug_args = {}
few_shot_args = {}
multiturn_args = {}
config = utils.jload(args.config)
model_parameters = config["model"]
dataset_parameters = config["dataset"]
for dataset_parameter in dataset_parameters:
path = dataset_parameter["path"]
save_path = dataset_parameter["save_path"]
dataset_name = dataset_parameter["name"]
debug_args[dataset_name] = dataset_parameter["debug"]
few_shot_args[dataset_name] = dataset_parameter["few_shot"]
forward_only = dataset_parameter.get("forward_only", False)
load_train = dataset_parameter.get("load_train", False)
load_reference = dataset_parameter.get("load_reference", False)
if not args.load_dataset:
if os.path.exists(save_path):
dataset_ = utils.jload(save_path)
inference_data[dataset_name] = dataset_["test"]
else:
raise Exception(
"Can't find the converted dataset. You may set load_dataset True to store the dataset first."
)
continue
dataset_classes[dataset_name] = dataset_parameter["dataset_class"]
dataset_class = eval(f"dataset.{dataset_parameter['dataset_class']}")
if not issubclass(dataset_class, dataset.BaseDataset):
raise ValueError(f"Dataset class {dataset_parameter['dataset_class']} is not a subclass of BaseDataset.")
dataset_ = dataset_class(path, logger, dataset_parameter["few_shot"], forward_only, load_train, load_reference)
dataset_.save(save_path)
if hasattr(dataset_, "multiturn") and dataset_.multiturn:
multiturn_args[dataset_name] = True
logger.info(f"{dataset_parameter['dataset_class']} is a multiturn dataset.")
else:
multiturn_args[dataset_name] = False
inference_data[dataset_name] = dataset_.dataset["test"]
if load_train and "train" in dataset_.dataset:
new_dataset_name = f"{dataset_name}_train"
debug_args[new_dataset_name] = dataset_parameter["debug"]
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
inference_data[new_dataset_name] = dataset_.dataset["train"]
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
if load_reference and "reference" in dataset_.dataset:
new_dataset_name = f"{dataset_name}_reference"
debug_args[new_dataset_name] = dataset_parameter["debug"]
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
inference_data[new_dataset_name] = dataset_.dataset["reference"]
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
if rank == 0:
logger.info(f"Dataset for inference are: {list(inference_data.keys())}")
for model_parameter in model_parameters:
model_name = model_parameter["name"]
model_class = eval(f"models.{model_parameter['model_class']}")
paramerters = model_parameter["parameters"]
batch_size = paramerters["batch_size"]
paramerters.update({"logger": logger})
paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]})
paramerters.update({"shard_config": shard_config})
model_ = model_class(**paramerters)
if not issubclass(model_class, models.BaseModel):
raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.")
for dataset_name, split_data in inference_data.items():
prev_questions = None
for category, category_data in split_data.items():
num_turn = category_data["inference_kwargs"].get("turns", 1)
if few_shot_args[dataset_name] and category_data["inference_kwargs"].get("few_shot_data", None) is None:
raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!")
answers_to_dump = copy.deepcopy(category_data)
for turn in range(num_turn):
if turn == 0:
dist_dataset = DistributedDataset(category_data["data"])
else:
dist_dataset = DistributedDataset(prev_questions)
sampler = DistributedSampler(
dist_dataset,
num_replicas=pg_mesh.size(DP_AXIS),
rank=pg_mesh.coordinate(DP_AXIS),
shuffle=False,
)
questions_loader = DataLoader(
dist_dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=8,
pin_memory=True,
collate_fn=lambda x: x,
)
category_data["inference_kwargs"]["dataset"] = dataset_name
category_data["inference_kwargs"]["category"] = category
answers_per_rank = model_.inference(
data_loader=questions_loader,
inference_kwargs=category_data["inference_kwargs"],
debug=debug_args[dataset_name],
)
prev_questions = answers_per_rank
answers_to_dump["data"] = answers_per_rank
if tp_rank == 0:
utils.jdump(
answers_to_dump,
os.path.join(
args.inference_save_path,
model_name,
f"{dataset_name}_{category}_inference_results_dp_rank{dp_rank}.json",
),
)
logger.info(f"Rank {rank} peak device mem: {accelerator.max_memory_allocated()/1024**3:.3f} GB")
del model_
accelerator.empty_cache()
dist.barrier()
if rank == 0:
model_names = [model_parameter["name"] for model_parameter in model_parameters]
dataset_names = {key: list(inference_data[key].keys()) for key in inference_data}
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names, dataset_classes)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ColossalEval inference process.")
parser.add_argument("--config", type=str, default=None, required=True, help="path to config file")
parser.add_argument("--load_dataset", default=False, action="store_true")
parser.add_argument("--inference_save_path", type=str, default=None, help="path to save inference results")
parser.add_argument("--tp_size", type=int, default=1, help="tensor parallel size, used for large model inference")
args = parser.parse_args()
main(args)