mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-19 16:45:45 +00:00
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
276 lines
11 KiB
Python
276 lines
11 KiB
Python
import argparse
|
|
import copy
|
|
import os
|
|
from typing import Dict, List
|
|
|
|
import torch.distributed as dist
|
|
from colossal_eval import dataset, models, utils
|
|
from colossal_eval.dataset.base import DistributedDataset
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
|
|
import colossalai
|
|
from colossalai.accelerator import get_accelerator
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
from colossalai.logging import get_dist_logger
|
|
from colossalai.shardformer import ShardConfig
|
|
|
|
logger = get_dist_logger()
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
|
|
def rm_and_merge(
|
|
dp_size: int,
|
|
save_path: str,
|
|
model_names: List[str],
|
|
dataset_names: Dict[str, List],
|
|
dataset_classes: Dict[str, List],
|
|
) -> None:
|
|
"""
|
|
Remove inference result per rank and merge them into one file.
|
|
|
|
Args:
|
|
dp_size: Number of groups for data parallel.
|
|
save_path: The folder for storing inference results.
|
|
model_names: Names of models for inference.
|
|
dataset_names: Names of dataset for inference.
|
|
dataset_classes: Dataset class for different inference results. We need to save dataset class to smooth the evaluation process.
|
|
|
|
"""
|
|
|
|
for model_name in model_names:
|
|
for dataset_name, categories in dataset_names.items():
|
|
all_answers_with_dataset_class = {}
|
|
all_answers_with_dataset_class["dataset_class"] = dataset_classes[dataset_name]
|
|
|
|
all_answers = {}
|
|
for category in categories:
|
|
all_answers[category] = {"data": []}
|
|
answers = {"data": []}
|
|
|
|
for r in range(dp_size):
|
|
directory = os.path.join(
|
|
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
|
|
)
|
|
if not os.path.exists(directory):
|
|
raise Exception(
|
|
f"Directory {directory} not found. There may be an error during inference time."
|
|
)
|
|
else:
|
|
rank_answers = utils.jload(directory)
|
|
deduplidate_answers = [x for x in rank_answers["data"] if x not in answers["data"]]
|
|
answers["data"].extend(deduplidate_answers)
|
|
answers["inference_kwargs"] = rank_answers["inference_kwargs"]
|
|
|
|
for r in range(dp_size):
|
|
try:
|
|
directory = os.path.join(
|
|
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
|
|
)
|
|
os.remove(directory)
|
|
except Exception as e:
|
|
print(e)
|
|
print(len(answers["data"]))
|
|
all_answers[category] = answers
|
|
|
|
all_answers_with_dataset_class["inference_results"] = all_answers
|
|
|
|
logger.info(f"Save inference results of model {model_name} on dataset {dataset_name}.")
|
|
utils.jdump(
|
|
all_answers_with_dataset_class,
|
|
os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"),
|
|
)
|
|
|
|
logger.info(f"Save inference results of model {model_name} for all dataset.")
|
|
logger.info(f"Save inference results of all models for all dataset.")
|
|
|
|
|
|
def main(args):
|
|
colossalai.launch_from_torch(seed=42)
|
|
accelerator = get_accelerator()
|
|
world_size = dist.get_world_size()
|
|
|
|
rank = dist.get_rank()
|
|
DP_AXIS = 0
|
|
TP_AXIS = 1
|
|
|
|
dp_size = world_size // args.tp_size
|
|
|
|
if rank == 0:
|
|
logger.info("Setting TP and DP...")
|
|
logger.info(f"TP size: {args.tp_size}, DP size: {dp_size}")
|
|
|
|
if world_size % args.tp_size != 0:
|
|
raise Exception(
|
|
f"TP size is {args.tp_size} while world size is {world_size}! Please make sure world size is a multiple of TP size!"
|
|
)
|
|
|
|
pg_mesh = ProcessGroupMesh(dp_size, args.tp_size)
|
|
tp_group = pg_mesh.get_group_along_axis(TP_AXIS)
|
|
|
|
coordinates = pg_mesh._coord
|
|
dp_rank = coordinates[DP_AXIS]
|
|
tp_rank = coordinates[TP_AXIS]
|
|
|
|
shard_config = (
|
|
ShardConfig(
|
|
tensor_parallel_process_group=tp_group,
|
|
enable_tensor_parallelism=args.tp_size > 1,
|
|
parallel_output=False,
|
|
enable_all_optimization=True,
|
|
)
|
|
if args.tp_size > 1
|
|
else None
|
|
)
|
|
|
|
inference_data = {}
|
|
dataset_classes = {}
|
|
debug_args = {}
|
|
few_shot_args = {}
|
|
multiturn_args = {}
|
|
|
|
config = utils.jload(args.config)
|
|
|
|
model_parameters = config["model"]
|
|
dataset_parameters = config["dataset"]
|
|
|
|
for dataset_parameter in dataset_parameters:
|
|
path = dataset_parameter["path"]
|
|
save_path = dataset_parameter["save_path"]
|
|
dataset_name = dataset_parameter["name"]
|
|
debug_args[dataset_name] = dataset_parameter["debug"]
|
|
few_shot_args[dataset_name] = dataset_parameter["few_shot"]
|
|
forward_only = dataset_parameter.get("forward_only", False)
|
|
load_train = dataset_parameter.get("load_train", False)
|
|
load_reference = dataset_parameter.get("load_reference", False)
|
|
|
|
if not args.load_dataset:
|
|
if os.path.exists(save_path):
|
|
dataset_ = utils.jload(save_path)
|
|
inference_data[dataset_name] = dataset_["test"]
|
|
else:
|
|
raise Exception(
|
|
"Can't find the converted dataset. You may set load_dataset True to store the dataset first."
|
|
)
|
|
|
|
continue
|
|
|
|
dataset_classes[dataset_name] = dataset_parameter["dataset_class"]
|
|
dataset_class = eval(f"dataset.{dataset_parameter['dataset_class']}")
|
|
if not issubclass(dataset_class, dataset.BaseDataset):
|
|
raise ValueError(f"Dataset class {dataset_parameter['dataset_class']} is not a subclass of BaseDataset.")
|
|
|
|
dataset_ = dataset_class(path, logger, dataset_parameter["few_shot"], forward_only, load_train, load_reference)
|
|
|
|
dataset_.save(save_path)
|
|
|
|
if hasattr(dataset_, "multiturn") and dataset_.multiturn:
|
|
multiturn_args[dataset_name] = True
|
|
logger.info(f"{dataset_parameter['dataset_class']} is a multiturn dataset.")
|
|
else:
|
|
multiturn_args[dataset_name] = False
|
|
|
|
inference_data[dataset_name] = dataset_.dataset["test"]
|
|
|
|
if load_train and "train" in dataset_.dataset:
|
|
new_dataset_name = f"{dataset_name}_train"
|
|
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
|
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
|
inference_data[new_dataset_name] = dataset_.dataset["train"]
|
|
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
|
|
|
if load_reference and "reference" in dataset_.dataset:
|
|
new_dataset_name = f"{dataset_name}_reference"
|
|
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
|
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
|
inference_data[new_dataset_name] = dataset_.dataset["reference"]
|
|
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
|
|
|
if rank == 0:
|
|
logger.info(f"Dataset for inference are: {list(inference_data.keys())}")
|
|
|
|
for model_parameter in model_parameters:
|
|
model_name = model_parameter["name"]
|
|
model_class = eval(f"models.{model_parameter['model_class']}")
|
|
paramerters = model_parameter["parameters"]
|
|
batch_size = paramerters["batch_size"]
|
|
paramerters.update({"logger": logger})
|
|
paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]})
|
|
paramerters.update({"shard_config": shard_config})
|
|
|
|
model_ = model_class(**paramerters)
|
|
if not issubclass(model_class, models.BaseModel):
|
|
raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.")
|
|
|
|
for dataset_name, split_data in inference_data.items():
|
|
prev_questions = None
|
|
for category, category_data in split_data.items():
|
|
num_turn = category_data["inference_kwargs"].get("turns", 1)
|
|
|
|
if few_shot_args[dataset_name] and category_data["inference_kwargs"].get("few_shot_data", None) is None:
|
|
raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!")
|
|
|
|
answers_to_dump = copy.deepcopy(category_data)
|
|
for turn in range(num_turn):
|
|
if turn == 0:
|
|
dist_dataset = DistributedDataset(category_data["data"])
|
|
else:
|
|
dist_dataset = DistributedDataset(prev_questions)
|
|
|
|
sampler = DistributedSampler(
|
|
dist_dataset,
|
|
num_replicas=pg_mesh.size(DP_AXIS),
|
|
rank=pg_mesh.coordinate(DP_AXIS),
|
|
shuffle=False,
|
|
)
|
|
questions_loader = DataLoader(
|
|
dist_dataset,
|
|
batch_size=batch_size,
|
|
sampler=sampler,
|
|
num_workers=8,
|
|
pin_memory=True,
|
|
collate_fn=lambda x: x,
|
|
)
|
|
category_data["inference_kwargs"]["dataset"] = dataset_name
|
|
category_data["inference_kwargs"]["category"] = category
|
|
|
|
answers_per_rank = model_.inference(
|
|
data_loader=questions_loader,
|
|
inference_kwargs=category_data["inference_kwargs"],
|
|
debug=debug_args[dataset_name],
|
|
)
|
|
prev_questions = answers_per_rank
|
|
|
|
answers_to_dump["data"] = answers_per_rank
|
|
|
|
if tp_rank == 0:
|
|
utils.jdump(
|
|
answers_to_dump,
|
|
os.path.join(
|
|
args.inference_save_path,
|
|
model_name,
|
|
f"{dataset_name}_{category}_inference_results_dp_rank{dp_rank}.json",
|
|
),
|
|
)
|
|
|
|
logger.info(f"Rank {rank} peak device mem: {accelerator.max_memory_allocated()/1024**3:.3f} GB")
|
|
|
|
del model_
|
|
accelerator.empty_cache()
|
|
|
|
dist.barrier()
|
|
if rank == 0:
|
|
model_names = [model_parameter["name"] for model_parameter in model_parameters]
|
|
dataset_names = {key: list(inference_data[key].keys()) for key in inference_data}
|
|
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names, dataset_classes)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="ColossalEval inference process.")
|
|
parser.add_argument("--config", type=str, default=None, required=True, help="path to config file")
|
|
parser.add_argument("--load_dataset", default=False, action="store_true")
|
|
parser.add_argument("--inference_save_path", type=str, default=None, help="path to save inference results")
|
|
parser.add_argument("--tp_size", type=int, default=1, help="tensor parallel size, used for large model inference")
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|