mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 18:40:28 +00:00
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
137 lines
5.2 KiB
Python
137 lines
5.2 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed import ProcessGroup
|
|
|
|
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
|
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
|
|
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
|
|
from colossalai.legacy.moe.manager import MOE_MANAGER
|
|
from colossalai.legacy.moe.utils import get_moe_epsize_param_dict
|
|
from colossalai.legacy.registry import GRADIENT_HANDLER
|
|
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size, set_moe_tensor_ep_group
|
|
|
|
|
|
def delete_moe_info(model):
|
|
for _, param in model.named_parameters():
|
|
if hasattr(param, "ep_group"):
|
|
delattr(param, "ep_group")
|
|
|
|
|
|
class MoeModel(nn.Module):
|
|
def __init__(self, ep_group: ProcessGroup = None):
|
|
super().__init__()
|
|
self.test_embed = nn.Linear(4, 16, bias=False)
|
|
self.w1 = torch.nn.Parameter(torch.randn(16, 8))
|
|
if ep_group:
|
|
set_moe_tensor_ep_group(self.w1, ep_group)
|
|
|
|
def forward(self, x):
|
|
x = self.test_embed(x)
|
|
x = torch.matmul(x, self.w1)
|
|
|
|
return x
|
|
|
|
|
|
@GRADIENT_HANDLER.register_module
|
|
class MoeGradientHandler(BaseGradientHandler):
|
|
"""A helper class to handle all-reduce operations in a data parallel group and
|
|
moe model parallel. A all-reduce collective communication will be operated in
|
|
:func:`handle_gradient` among a data parallel group.
|
|
For better performance, it bucketizes the gradients of all parameters that are
|
|
the same type to improve the efficiency of communication.
|
|
|
|
Args:
|
|
model (Module): Model where the gradients accumulate.
|
|
optimizer (Optimizer): Optimizer for updating the parameters.
|
|
"""
|
|
|
|
def __init__(self, model, optimizer=None):
|
|
super().__init__(model, optimizer)
|
|
|
|
def handle_gradient(self):
|
|
"""A method running an all-reduce operation in a data parallel group.
|
|
Then running an all-reduce operation for all parameters in experts
|
|
across moe model parallel group
|
|
"""
|
|
if dist.get_world_size() > 1:
|
|
epsize_param_dict = get_moe_epsize_param_dict(self._model)
|
|
|
|
# epsize is 1, indicating the params are replicated among processes in data parallelism
|
|
# use the ParallelMode.DATA to get data parallel group
|
|
# reduce gradients for all parameters in data parallelism
|
|
if 1 in epsize_param_dict:
|
|
bucket_allreduce(param_list=epsize_param_dict[1])
|
|
|
|
for ep_size in epsize_param_dict:
|
|
if ep_size != 1 and ep_size != MOE_MANAGER.world_size:
|
|
bucket_allreduce(
|
|
param_list=epsize_param_dict[ep_size], group=MOE_MANAGER.parallel_info_dict[ep_size].dp_group
|
|
)
|
|
|
|
|
|
def assert_not_equal_in_group(tensor, process_group=None):
|
|
# all gather tensors from different ranks
|
|
world_size = dist.get_world_size(process_group)
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
|
|
# check if they are equal one by one
|
|
for i in range(world_size - 1):
|
|
a = tensor_list[i]
|
|
b = tensor_list[i + 1]
|
|
assert not torch.allclose(a, b), (
|
|
f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}"
|
|
)
|
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
|
model.train()
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
if criterion:
|
|
y = model(data)
|
|
loss = criterion(y, label)
|
|
else:
|
|
loss = model(data, label)
|
|
loss = loss.float()
|
|
|
|
if isinstance(model, LowLevelZeroModel):
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
return y
|
|
|
|
|
|
def sync_local_from_ep(local_model, ep_model, assert_grad_flag: bool = False) -> None:
|
|
"""Sync the parameters of tp model from ep model
|
|
|
|
Args:
|
|
local_model (MoeModule)
|
|
ep_model (MoeModule)
|
|
"""
|
|
for (local_name, local_param), (ep_name, ep_param) in zip(
|
|
local_model.named_parameters(), ep_model.named_parameters()
|
|
):
|
|
if "experts" not in local_name:
|
|
if assert_grad_flag:
|
|
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
|
|
assert torch.allclose(local_param.grad, ep_param.grad)
|
|
else:
|
|
local_param.data.copy_(ep_param.data)
|
|
continue
|
|
|
|
# gather param from ep model
|
|
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
|
all_param = torch.cat(param_list, dim=0)
|
|
if assert_grad_flag:
|
|
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
|
all_grad = torch.cat(grad_list, dim=0)
|
|
|
|
if assert_grad_flag:
|
|
assert torch.allclose(local_param, all_param)
|
|
assert torch.allclose(local_param.grad, all_grad)
|
|
else:
|
|
local_param.data.copy_(all_param.data)
|