mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
* add SimPO
* fix dataloader
* remove debug code
* add orpo
* fix style
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix colossalai, transformers version
* fix torch colossalai version
* update transformers version
* [shardformer] DeepseekMoE support (#5871)
* [Feature] deepseek moe expert parallel implement
* [misc] fix typo, remove redundant file (#5867)
* [misc] fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] deepseek support & unit test
* [misc] remove debug code & useless print
* [misc] fix typos (#5872)
* [Feature] remove modeling file, use auto config. (#5884)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [Deepseek] remove redundant code (#5888)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [Feature/deepseek] resolve comment. (#5889)
* [misc] fix typos
* [Feature] deepseek support via auto model, remove modeling file
* [misc] delete useless file
* [misc] fix typos
* [misc] remove redundant code
* [misc] mv module replacement into if branch
* [misc] add some warning message and modify some code in unit test
* [misc] fix typos
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Hoxfix] Fix CUDA_DEVICE_MAX_CONNECTIONS for comm overlap
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feat] Diffusion Model(PixArtAlpha/StableDiffusion3) Support (#5838)
* Diffusion Model Inference support
* Stable Diffusion 3 Support
* pixartalpha support
* [HotFix] CI,import,requirements-test for #5838 (#5892)
* [Hot Fix] CI,import,requirements-test
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [Feature] Enable PP + SP for llama (#5868)
* fix cross-PP-stage position id length diff bug
* fix typo
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* use a one cross entropy func for all shardformer models
---------
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [ShardFormer] Add Ulysses Sequence Parallelism support for Command-R, Qwen2 and ChatGLM (#5897)
* add benchmark for sft, dpo, simpo, orpo. Add benchmarking result. Support lora with gradient checkpoint
* fix style
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix eval
* hotfix citation
* [zero] support all-gather overlap (#5898)
* [zero] support all-gather overlap
* [zero] add overlap all-gather flag
* [misc] fix typo
* [zero] update api
* fix orpo cross entropy loss
* [Auto Parallel]: Speed up intra-op plan generation by 44% (#5446)
* Remove unnecessary calls to deepcopy
* Build DimSpec's difference dict only once
This change considerably speeds up construction speed of DimSpec objects. The difference_dict is the same for each DimSpec object, so a single copy of it is enough.
* Fix documentation of DimSpec's difference method
* [ShardFormer] fix qwen2 sp (#5903)
* [compatibility] support torch 2.2 (#5875)
* Support Pytorch 2.2.2
* keep build_on_pr file and update .compatibility
* fix object_to_tensor usage when torch>=2.3.0 (#5820)
* [misc] support torch2.3 (#5893)
* [misc] support torch2.3
* [devops] update compatibility ci
* [devops] update compatibility ci
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] add debug
* [devops] remove debug
* [devops] remove debug
* [release] update version (#5912)
* [plugin] support all-gather overlap for hybrid parallel (#5919)
* [plugin] fixed all-gather overlap support for hybrid parallel
* add kto
* fix style, add kto data sample
* [Examples] Add lazy init to OPT and GPT examples (#5924)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [ColossalChat] Hotfix for ColossalChat (#5910)
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* add ignore and tiny llama
* fix path issue
* run style
* fix issue
* update bash
* fix ddp issue
* add Qwen 1.5 32B
* refactor tokenization
* [FIX BUG] UnboundLocalError: cannot access local variable 'default_conversation' where it is not associated with a value (#5931)
* cannot access local variable 'default_conversation' where it is not associated with a value
set default value for 'default_conversation'
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix test data
* refactor evaluation
* remove real data path
* remove real data path
* Add n_fused as an input from native_module (#5894)
* [FIX BUG] convert env param to int in (#5934)
* [Hotfix] Fix ZeRO typo #5936
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [Feature] Add a switch to control whether the model checkpoint needs to be saved after each epoch ends (#5941)
* Add a switch to control whether the model checkpoint needs to be saved after each epoch ends
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* fix style
* fix style
* fix style
* [shardformer] hotfix attn mask (#5945)
* [shardformer] hotfix attn mask (#5947)
* [Feat] Distrifusion Acceleration Support for Diffusion Inference (#5895)
* Distrifusion Support source
* comp comm overlap optimization
* sd3 benchmark
* pixart distrifusion bug fix
* sd3 bug fix and benchmark
* generation bug fix
* naming fix
* add docstring, fix counter and shape error
* add reference
* readme and requirement
* [zero] hotfix update master params (#5951)
* [release] update version (#5952)
* [Chat] Fix lora (#5946)
* fix merging
* remove filepath
* fix style
* Update README.md (#5958)
* [hotfix] Remove unused plan section (#5957)
* remove readme
* fix readme
* update
* [test] add mixtral for sequence classification
* [test] add mixtral transformer test
* [moe] fix plugin
* [test] mixtra pp shard test
* [chore] handle non member group
* [zero] solve hang
* [test] pass mixtral shardformer test
* [moe] implement transit between non moe tp and ep
* [zero] solve hang
* [misc] solve booster hang by rename the variable
* solve hang when parallel mode = pp + dp
* [moe] implement submesh initialization
* [moe] add mixtral dp grad scaling when not all experts are activated
* [chore] manually revert unintended commit
* [chore] trivial fix
* [chore] arg pass & remove drop token
* [test] add mixtral modelling test
* [moe] implement tp
* [moe] test deepseek
* [moe] clean legacy code
* [Feature] MoE Ulysses Support (#5918)
* moe sp support
* moe sp bug solve
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [chore] minor fix
* [moe] init moe plugin comm setting with sp
* moe sp + ep bug fix
* [moe] finalize test (no pp)
* [moe] full test for deepseek and mixtral (pp + sp to fix)
* [chore] minor fix after rebase
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* [chore] solve moe ckpt test failure and some other arg pass failure
* [moe] remove ops
* [test] fix test: test_zero1_2
* [bug] fix: somehow logger hangs the program
* [moe] deepseek moe sp support
* [test] add check
* [deepseek] replace attn (a workaround for bug in transformers)
* [misc] skip redunant test
* [misc] remove debug/print code
* [moe] refactor mesh assignment
* Revert "[moe] implement submesh initialization"
This reverts commit 2f9bce6686
.
* [chore] change moe_pg_mesh to private
* [misc] remove incompatible test config
* [misc] fix ci failure: change default value to false in moe plugin
* [misc] remove useless condition
* [chore] docstring
* [moe] remove force_overlap_comm flag and add warning instead
* [doc] add MoeHybridParallelPlugin docstring
* [moe] solve dp axis issue
* [chore] remove redundant test case, print string & reduce test tokens
* [feat] Dist Loader for Eval (#5950)
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* support auto distributed data loader
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix tp error
* remove unused parameters
* remove unused
* update inference
* update docs
* update inference
---------
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [lora] lora support hybrid parallel plugin (#5956)
* lora support hybrid plugin
* fix
* fix
* fix
* fix
* fp8 operators for compressed communication
cast_to_fp8, cast_from_fp8, all_reduce_fp8
* fix scaling algorithm in FP8 casting
* support fp8 communication in pipeline parallelism
* add fp8_communication flag in the script
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix typo
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* shardformer fp8
* fix rebase
* remove all to all
* fix shardformer fp8 communication training degradation
* [fp8] support all-gather flat tensor (#5932)
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* Update low_level_optim.py
---------
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: Haze188 <haze188@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Stephan Kö <stephankoe@users.noreply.github.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: zhurunhua <1281592874@qq.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: Gao, Ruiyuan <905370712@qq.com>
Co-authored-by: hxwang <wang1570@e.ntu.edu.sg>
Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: Wang Binluo <32676639+wangbluo@users.noreply.github.com>
Co-authored-by: HangXu <hangxu0304@gmail.com>
176 lines
6.0 KiB
Python
176 lines
6.0 KiB
Python
import os
|
|
import tempfile
|
|
from contextlib import nullcontext
|
|
from copy import deepcopy
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.optim import SGD, Adam
|
|
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
|
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
|
from colossalai.testing import parameterize, spawn
|
|
from colossalai.testing.random import seed_all
|
|
from colossalai.testing.utils import spawn
|
|
from tests.test_moe.moe_utils import check_model_equal
|
|
|
|
tokens, n_experts = 7, 4
|
|
hidden_size = 8
|
|
top_k = 2
|
|
|
|
|
|
def get_optimizer_snapshot(optim):
|
|
state = {id(k): deepcopy(v) for k, v in optim.state.items()}
|
|
param_groups = []
|
|
for group in optim.param_groups:
|
|
params = [id(p) for p in group["params"]]
|
|
new_group = {"params": params}
|
|
for k, v in group.items():
|
|
if k != "params":
|
|
new_group[k] = v
|
|
param_groups.append(new_group)
|
|
return {
|
|
"state": state,
|
|
"param_groups": param_groups,
|
|
}
|
|
|
|
|
|
def check_optimizer_snapshot_equal(snapshot1, snapshot2, param2name, moe_dp_group=None):
|
|
assert len(snapshot1["param_groups"]) == len(snapshot2["param_groups"])
|
|
for group1, group2 in zip(snapshot1["param_groups"], snapshot2["param_groups"]):
|
|
assert set(group1.keys()) == set(group2.keys())
|
|
for k in group1.keys():
|
|
assert group1[k] == group2[k]
|
|
# check state
|
|
assert set(snapshot1["state"].keys()) == set(
|
|
snapshot2["state"].keys()
|
|
), f"{snapshot1['state'].keys()}, {snapshot2['state'].keys()}"
|
|
|
|
passed = True
|
|
count = 0
|
|
for pid in snapshot1["state"].keys():
|
|
state1, state2 = snapshot1["state"][pid], snapshot2["state"][pid]
|
|
assert set(state1.keys()) == set(state2.keys())
|
|
bug = False
|
|
for k in state1.keys():
|
|
if isinstance(state1[k], torch.Tensor):
|
|
if not torch.equal(state1[k], state2[k]):
|
|
bug = True
|
|
count += 1
|
|
else:
|
|
assert state1[k] == state2[k]
|
|
if bug:
|
|
passed = False
|
|
|
|
if not passed:
|
|
raise AssertionError(f"A total of {count} optim states are not equal")
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
[
|
|
MixtralConfig(
|
|
hidden_size=hidden_size,
|
|
intermediate_size=hidden_size * 2,
|
|
num_local_experts=n_experts,
|
|
num_experts_per_tok=top_k,
|
|
num_attention_heads=2,
|
|
num_key_value_heads=2,
|
|
num_hidden_layers=2,
|
|
),
|
|
MixtralForCausalLM,
|
|
],
|
|
],
|
|
)
|
|
def check_moe_checkpoint(test_config):
|
|
dtype, precision = torch.float16, "fp16"
|
|
config, model_cls = test_config
|
|
torch.cuda.set_device(dist.get_rank())
|
|
|
|
context = tempfile.TemporaryDirectory() if dist.get_rank() == 0 else nullcontext()
|
|
with context as f:
|
|
if dist.get_rank() == 0:
|
|
broadcast_objects = [f] # any picklable object
|
|
else:
|
|
broadcast_objects = [None]
|
|
dist.broadcast_object_list(broadcast_objects, src=0)
|
|
|
|
input_ids = torch.randint(0, 100, (2, tokens)).cuda()
|
|
orig_model = model_cls(config).cuda().to(dtype)
|
|
|
|
seed_all(10086)
|
|
model = deepcopy(orig_model)
|
|
optimizer = SGD(model.parameters(), lr=1e-3)
|
|
plugin = MoeHybridParallelPlugin(
|
|
pp_size=2, ep_size=2, tp_size=1, microbatch_size=1, zero_stage=1, precision=precision
|
|
)
|
|
booster = Booster(plugin=plugin)
|
|
model, optimizer, *_ = booster.boost(model=model, optimizer=optimizer)
|
|
# initialize grads
|
|
data_iter = iter(
|
|
[{"input_ids": input_ids, "attention_mask": torch.ones_like(input_ids), "labels": input_ids.clone()}]
|
|
)
|
|
booster.execute_pipeline(
|
|
data_iter,
|
|
model,
|
|
lambda outputs, inputs: outputs.loss,
|
|
optimizer,
|
|
)
|
|
tmpdirname = broadcast_objects[0]
|
|
model_dir = os.path.join(tmpdirname, "mixtral_model")
|
|
hf_model_dir = os.path.join(tmpdirname, "mixtral_hf_model")
|
|
optim_dir = os.path.join(tmpdirname, "mixtral_optim")
|
|
|
|
booster.save_model(model, model_dir, shard=True)
|
|
dist.barrier()
|
|
if dist.get_rank() == 0:
|
|
saved_model = model_cls.from_pretrained(model_dir).cuda().to(dtype)
|
|
check_model_equal(orig_model, saved_model)
|
|
saved_model.save_pretrained(hf_model_dir)
|
|
dist.barrier()
|
|
# check load model
|
|
new_model = model_cls(config).cuda().to(dtype)
|
|
new_optimizer = Adam(new_model.parameters(), lr=1e-3)
|
|
new_model, new_optimizer, *_ = booster.boost(model=new_model, optimizer=new_optimizer)
|
|
booster.load_model(new_model, hf_model_dir)
|
|
check_model_equal(model, new_model)
|
|
|
|
# check save optimizer
|
|
optimizer.step()
|
|
for group in optimizer.param_groups:
|
|
group["lr"] = 0.1
|
|
snapshot = get_optimizer_snapshot(optimizer.unwrap())
|
|
booster.save_optimizer(optimizer, optim_dir, shard=True)
|
|
dist.barrier()
|
|
|
|
# reset optimizer state
|
|
for state in optimizer.unwrap().state.values():
|
|
for v in state.values():
|
|
if isinstance(v, torch.Tensor):
|
|
v.zero_()
|
|
booster.load_optimizer(optimizer, optim_dir)
|
|
loaded_snapshot = get_optimizer_snapshot(optimizer.unwrap())
|
|
check_optimizer_snapshot_equal(snapshot, loaded_snapshot, None, model)
|
|
# Ensure rank 0 waits for all other ranks to finish
|
|
dist.barrier()
|
|
|
|
|
|
def run_dist(rank: int, world_size: int, port: int):
|
|
colossalai.launch(rank, world_size, "localhost", port)
|
|
check_moe_checkpoint()
|
|
|
|
|
|
# Test EP + ZeRO + PP
|
|
@pytest.mark.parametrize("world_size", [4])
|
|
def test_mixtral_moe_layer(world_size: int):
|
|
spawn(run_dist, world_size)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_mixtral_moe_layer(4)
|