ColossalAI/applications/ColossalChat/rl_example.py
2025-06-27 14:16:23 +08:00

380 lines
16 KiB
Python

import argparse
import json
import os
import ray
import torch
from coati.distributed.launch import launch_distributed
DEFAUT_SYSTEM_PROMPT = {
"think_answer_tags": "You are a helpful assistant. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and<answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>. Now the user asks you to solve a math problem that involves reasoning. After thinking, when you finally reach a conclusion, clearly output the final answer without explanation within the <answer> </answer> tags, i.e., <answer> 123 </answer>.\n\n",
"boxed": "Please reason step by step, and put your final answer within \\boxed{}.",
"code": "You are a helpful assistant.",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default="Qwen/Qwen2.5-7B")
parser.add_argument("-d", "--dataset", type=str, default="data.jsonl")
parser.add_argument(
"-ed",
"--eval-dataset",
type=str,
default=None,
help="Evaluation dataset for each task, please use json format to specify the dataset for each task. \
For example: {'task1':'data_eval_task1.jsonl', 'task2':'data_eval_task2.jsonl'}, the jsonl file should be in the same format as the training dataset. \
The key is the task name, and the value is the path to the jsonl file",
)
parser.add_argument("-p", "--project", type=str, default="GRPO", help="Project name.")
parser.add_argument("-e", "--num-episodes", type=int, default=1, help="Number of episodes to train.")
# Distributed training parameters
parser.add_argument("-t", "--num-trainers", type=int, default=2)
parser.add_argument("-i", "--num-inferencer", type=int, default=2)
parser.add_argument("-g", "--num-generations", type=int, default=8, help="Number of generations per prompt.")
parser.add_argument(
"-ibs",
"--inference-batch-size",
type=int,
default=64,
help="Number of prompts to generate per inference step. It should be divisible by tbs, and the weights on the inference backend will be synced every ibs/tbs training steps of the policy model.",
)
parser.add_argument(
"-imbs",
"--inference-microbatch-size",
type=int,
default=8,
help="Effective batch size for the inference backend to run generation. Please select based on memory constraint.",
)
parser.add_argument(
"-tbs",
"--train-batch-size",
type=int,
default=32,
help="Number of unique prompts to update policy model per step per dp group. Gradient is accumulated across tbs * dp_size unique prompts, equivalently tbs * g * dp_size samples",
)
parser.add_argument(
"-tMbs",
"--train-minibatch-size",
type=int,
default=8,
help="Number of unique prompts in each training batch per dp group. The inference backend must generate tMbs * g * dp_size samples before forwarding. Satisfy tMbs * g >= tmbs",
)
parser.add_argument(
"-tmbs",
"--train-microbatch-size",
type=int,
default=2,
help="Effective batch size per dp group for forwarding and backwarding. Please select based on the availiable memory.",
)
parser.add_argument(
"-tp",
"--tensor-parallel-size",
type=int,
default=1,
help="Tensor parallel size for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-pp",
"--pipeline-parallel-size",
type=int,
default=1,
help="Pipeline parallel size for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-zero",
"--zero-stage",
type=int,
default=0,
help="Zero stage for the trainer (consumer). Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"--ray_dir", type=str, default=None, help="Custom temperary directory for storing ray cluster data, Optional"
)
parser.add_argument(
"--master_address", type=str, default=None, help="Master address for multi-node distributed training, Optional"
)
parser.add_argument(
"--master_port", type=int, default=29506, help="Master port for multi-node distributed training, Optional"
)
# Sampling parameters
parser.add_argument("-b", "--backend", type=str, default="transformers", choices=["transformers", "vllm"])
parser.add_argument("-temp", "--temperature", type=float, default=1.0, help="Temperature for sampling.")
parser.add_argument(
"-topk",
"--top-k",
type=int,
default=None,
help="Top k for sampling. Please check the generation arguments documentation for your backend.",
)
parser.add_argument(
"-topp",
"--top-p",
type=float,
default=1.0,
help="Top p for sampling. Please check the generation arguments documentation for your backend.",
)
parser.add_argument("-s", "--system-prompt", type=str, default=None, help="System prompt for data construction.")
parser.add_argument("-mnt", "--max-new-tokens", type=int, default=1024 * 4 - 512, help="Max length for generation.")
parser.add_argument("-mpt", "--max-prompt-tokens", type=int, default=512, help="Max length for prompt.")
parser.add_argument(
"-ptp",
"--producer-tensor-parallel-size",
type=int,
default=1,
help="Tensor parallel size for the producer. Please check the generation arguments documentation for your backend.",
)
# GRPO parameters
parser.add_argument("-a", "--algo", type=str, default="GRPO", choices=["DAPO", "GRPO"])
parser.add_argument("-lr", "--learning-rate", type=float, default=1e-6, help="Learning rate for GRPO.")
parser.add_argument("-kl", "--kl-coeff", type=float, default=0.01, help="KL penalty coefficient for GRPO.")
parser.add_argument(
"-rt",
"--reward-type",
type=str,
default="think_answer_tags",
choices=["think_answer_tags", "boxed", "code"],
help="Reward type for GRPO.",
)
parser.add_argument(
"-ei",
"--eval-interval",
type=int,
default=100,
help="Interval for evaluation. Evaluate every ei training steps.",
)
parser.add_argument(
"-nb",
"--n-behind",
type=int,
default=0,
help="Number of producer batches to rollout to fill the data buffer before trainer starts to decrease bubble time",
)
# Logging/Checkpointing parameters
parser.add_argument("-si", "--save-interval", type=int, default=100, help="Interval for saving checkpoints.")
parser.add_argument("-sd", "--save-dir", type=str, default="./model", help="Directory for saving checkpoints.")
parser.add_argument(
"-esd", "--eval-save-dir", type=str, default="./eval", help="Directory for saving evaluation results."
)
parser.add_argument(
"-rsd", "--rollout-save-dir", type=str, default="./rollouts", help="Directory for saving rollout loggings."
)
parser.add_argument(
"--enable_profiling", action="store_true", default=False, help="Enable profiling for the training process."
)
args = parser.parse_args()
if args.train_minibatch_size is None:
# Default settings: Using train batch size as mini batch size
args.train_minibatch_size = args.train_batch_size
if args.inference_batch_size is None:
# Default settings: Using train batch size as inference batch size, sync every inference model every train step
args.inference_batch_size = args.train_batch_size
assert (
args.train_minibatch_size * args.num_generations >= args.train_microbatch_size
and args.train_microbatch_size > 0
), "Train micro batch size must be greater than 0 less than train mini batch size * num generations"
assert (
args.train_minibatch_size <= args.train_batch_size and args.train_batch_size % args.train_minibatch_size == 0
), "Train mini batch size must be less than or equals to train batch size and train batch size must be divisible by train mini batch size"
if args.master_address is None:
# Default settings: Using single machine
ray.init(
address="local",
namespace="ray-example",
runtime_env={
"env_vars": {
# "RAY_DEBUG_POST_MORTEM": "1" # enable post-mortem debugging with ray
"TOKENIZERS_PARALLELISM": "false"
},
},
)
else:
# For ray distributed multi-machine training, Please change _node_ip_address to your IP address of your master node
ray.init(
_node_ip_address=args.master_address,
namespace="ray-example",
_temp_dir=args.ray_dir,
runtime_env={
"env_vars": {
# "RAY_DEBUG_POST_MORTEM": "1" # enable post-mortem debugging with ray
"TOKENIZERS_PARALLELISM": "false"
},
},
)
if args.top_k is None:
if args.backend == "transformers":
args.top_k = 50
elif args.backend == "vllm":
args.top_k = -1
os.environ["TOKENIZERS_PARALLELISM"] = "false" # Disable tokenizers parallelism to avoid deadlock
inference_model_config = dict(path=args.model)
train_model_config = dict(path=args.model, use_flash_attention_2=True, use_cache=False)
generate_config = dict(top_k=args.top_k, top_p=args.top_p, temperature=args.temperature)
if args.backend == "transformers":
inference_model_config.update(
dict(
use_flash_attention_2=True,
torch_dtype=torch.bfloat16,
)
)
generate_config.update(
dict(
max_length=args.max_new_tokens + args.max_prompt_tokens,
do_sample=True,
max_new_tokens=None,
early_stopping=False if args.reward_type == "think_answer_tags" else True,
stop_strings=["</answer>"] if args.reward_type == "think_answer_tags" else None,
)
)
eval_generation_config = {"temperature": 0.6} # used to update generation config for evaluation
elif args.backend == "vllm":
inference_model_config.update(
dict(
gpu_memory_utilization=0.7,
enforce_eager=True,
enable_chunked_prefill=True,
max_model_len=args.max_new_tokens + args.max_prompt_tokens,
tensor_parallel_size=args.producer_tensor_parallel_size,
)
)
if args.enable_profiling:
# If profiling is enabled, we force model to generate to max_new_tokens
generate_config.update(
dict(
max_tokens=args.max_new_tokens, # max new tokens
ignore_eos=True,
include_stop_str_in_output=True,
stop=None,
)
)
else:
generate_config.update(
dict(
max_tokens=args.max_new_tokens, # max new tokens
ignore_eos=True if args.reward_type == "think_answer_tags" else False,
include_stop_str_in_output=True,
stop=["</answer>"] if args.reward_type == "think_answer_tags" else None,
)
)
eval_generation_config = {"temperature": 0.6} # used to update generation config for evaluation
else:
raise ValueError(f"Unsupported backend: {args.backend}")
if args.algo == "GRPO":
# Default Settings
grpo_config = {
"lr": args.learning_rate,
"train_microbatch_size": args.train_microbatch_size,
"beta": args.kl_coeff, # KL penalty coefficient
"loss_variation": "sample_level",
"reward_fn_type": args.reward_type,
"max_length": args.max_new_tokens + args.max_prompt_tokens,
"max_new_tokens": args.max_new_tokens,
"response_format_tags": (
{
"think_start": {"text": "<think>", "num_occur": 1},
"think_end": {"text": "</think>", "num_occur": 1},
"answer_start": {"text": "<answer>", "num_occur": 1},
"answer_end": {"text": "</answer>", "num_occur": 1},
}
if args.reward_type == "think_answer_tags"
else None
),
}
elif args.algo == "DAPO":
# DAPO variant settings
grpo_config = {
"filter_range": [0.01, 0.99], # only filter out all zero batch and all one batch
"lr": args.learning_rate,
"train_microbatch_size": args.train_microbatch_size,
"dynamic_batching": True,
"clip_eps_low": 0.2,
"clip_eps_high": 0.28,
"skip_threshold": 20.0,
"beta": 0, # no KL penalty for DAPO
"loss_variation": "token_level",
"soft_over_length_punishment": True,
"max_length": args.max_new_tokens + args.max_prompt_tokens,
"max_new_tokens": args.max_new_tokens,
"cache_length": min(1024, int(args.max_new_tokens / 4)),
"filter_truncated_response": True,
"reward_fn_type": args.reward_type,
"response_format_tags": (
{
"think_start": {"text": "<think>", "num_occur": 1},
"think_end": {"text": "</think>", "num_occur": 1},
"answer_start": {"text": "<answer>", "num_occur": 1},
"answer_end": {"text": "</answer>", "num_occur": 1},
}
if args.reward_type == "think_answer_tags"
else None
),
}
else:
raise ValueError(f"Unsupported algorithm: {args.algo}")
if args.system_prompt is None:
# Default system prompt
args.system_prompt = DEFAUT_SYSTEM_PROMPT[args.reward_type]
launch_distributed(
num_producers=args.num_inferencer,
num_proc_per_producer=inference_model_config.get("tensor_parallel_size", args.producer_tensor_parallel_size),
num_consumer_procs=args.num_trainers,
num_episodes=args.num_episodes,
inference_batch_size=args.inference_batch_size,
inference_microbatch_size=args.inference_microbatch_size,
train_batch_size=args.train_batch_size,
train_minibatch_size=args.train_minibatch_size,
train_dataset_config={
"path": args.dataset,
"max_length": args.max_prompt_tokens,
"system_prompt": args.system_prompt,
},
inference_model_config=inference_model_config,
generate_config=generate_config,
num_generations=args.num_generations,
train_model_config=train_model_config,
grpo_config=grpo_config,
plugin_config={
"tp_size": args.tensor_parallel_size,
"pp_size": args.pipeline_parallel_size,
"microbatch_size": max(
1, args.train_microbatch_size // args.pipeline_parallel_size
), # microbatch size should be set to train_microbatch_size // pp_size
"zero_stage": args.zero_stage,
"max_norm": 1.0,
}, # for pp, tp
inference_backend=args.backend,
master_addr="localhost",
master_port=args.master_port,
core_algo=args.algo,
project_name=args.project,
save_interval=args.save_interval,
save_dir=os.path.join(args.save_dir, args.project.replace(" ", "_")),
eval_dataset_config=(
{
k: {"path": v, "max_length": args.max_prompt_tokens, "system_prompt": args.system_prompt}
for k, v in json.loads(args.eval_dataset).items()
}
if args.eval_dataset
else None
),
eval_interval=args.eval_interval,
eval_save_dir=os.path.join(args.eval_save_dir, args.project.replace(" ", "_")),
eval_generation_config=eval_generation_config,
log_rollout_interval=20,
rollout_save_dir=args.rollout_save_dir,
enable_profiling=args.enable_profiling,
n_behind=args.n_behind,
)