mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-10 12:22:28 +00:00
49 lines
1.6 KiB
Python
49 lines
1.6 KiB
Python
from typing import List
|
|
|
|
from torch.nn import Module
|
|
|
|
from colossalai.shardformer.layer import Linear1D_Col
|
|
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
|
|
from colossalai.shardformer.policies.llama import LlamaPolicy
|
|
|
|
from ..modeling.llama import LlamaPipelineForwards
|
|
|
|
|
|
class LlamaForCausalLMPipelinePolicy(LlamaPolicy):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def module_policy(self):
|
|
from transformers import LlamaForCausalLM
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
# add a new item for casual lm
|
|
new_item = {
|
|
LlamaForCausalLM: ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)
|
|
)
|
|
]
|
|
)
|
|
}
|
|
policy.update(new_item)
|
|
|
|
if self.pipeline_stage_manager:
|
|
# set None as default
|
|
self.set_pipeline_forward(
|
|
model_cls=LlamaForCausalLM, new_forward=LlamaPipelineForwards.llama_for_causal_lm_forward, policy=policy
|
|
)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
"""Get pipeline layers for current stage."""
|
|
stage_manager = self.pipeline_stage_manager
|
|
held_layers = super().get_held_layers()
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(self.model.lm_head)
|
|
return held_layers
|