ColossalAI/tests/kit/model_zoo/transformers/qwen3.py
2025-07-10 13:57:52 +08:00

122 lines
3.8 KiB
Python

import torch
import transformers
from ..registry import ModelAttribute, model_zoo
try:
from transformers import Qwen3Config
HAS_QWEN3 = True
except ImportError:
HAS_QWEN3 = False
if HAS_QWEN3:
# ===============================
# Register Qwen3
# ===============================
def data_gen():
# the input ids are corresponding to the sentence
# 'Hello, my dog is cute'
#
# the code is give below:
# -----------------------------------
# from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-4B')
# input = "This is a test sentence. This is a test sentence. This is a test sentence. This is a test sentence."
# tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
# -----------------------------------
# NOTE: due to sp convention, need to be a multiple of 4
input_ids = torch.tensor(
[
[
1986,
374,
264,
1273,
11652,
13,
1096,
374,
264,
1273,
11652,
13,
1096,
374,
264,
1273,
11652,
13,
1096,
374,
264,
1273,
11652,
13,
]
],
dtype=torch.long,
)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
return dict(input_ids=input_ids, attention_mask=attention_mask)
# label is needed for causal lm
def data_gen_for_causal_lm():
data = data_gen()
labels = data["input_ids"].clone()
data["labels"] = labels
return data
# transform the output to a dict
output_transform_fn = lambda x: x
# function to get the loss
loss_fn = lambda output: output["last_hidden_state"].mean()
loss_fn_for_causal_lm = lambda output: output["loss"]
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
config = Qwen3Config(
hidden_size=128,
intermediate_size=256,
max_window_layers=4,
num_attention_heads=16,
num_hidden_layers=4,
num_key_value_heads=16,
attn_implementation="sdpa", # for tests on fp32
sliding_window=None, # not supported by sdpa
use_cache=False,
)
config.pad_token_id = 0
# register the following models
# transformers.Qwen3Model,
# transformers.Qwen3ForCausalLM,
# transformers.Qwen3ForSequenceClassification,
model_zoo.register(
name="transformers_qwen3",
model_fn=lambda: transformers.Qwen3Model(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_qwen3_for_causal_lm",
model_fn=lambda: transformers.Qwen3ForCausalLM(config),
data_gen_fn=data_gen_for_causal_lm,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_causal_lm,
model_attribute=ModelAttribute(has_control_flow=True),
)
model_zoo.register(
name="transformers_qwen3_for_sequence_classification",
model_fn=lambda: transformers.Qwen3ForSequenceClassification(config),
data_gen_fn=data_gen,
output_transform_fn=output_transform_fn,
loss_fn=loss_fn_for_seq_classification,
model_attribute=ModelAttribute(has_control_flow=True),
)