ColossalAI/colossalai/tensor/d_tensor/api.py
Frank Lee 015af592f8 [shardformer] integrated linear 1D with dtensor (#3996)
* [shardformer] integrated linear 1D with dtensor

* polish code
2023-07-04 16:05:01 +08:00

45 lines
1.8 KiB
Python

from typing import Union
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from colossalai.device.device_mesh import DeviceMesh
from .d_tensor import DTensor
from .sharding_spec import ShardingSpec
def shard_rowwise(tensor: torch.Tensor, group_or_device_mesh: Union[ProcessGroup, DeviceMesh] = None) -> DTensor:
"""
Shard the first dim of the given tensor
"""
# if the group_or_device_mesh is None, we shard the tensor with respect to the global process group
if group_or_device_mesh is None:
group_or_device_mesh = dist.GroupMember.WORLD
if isinstance(group_or_device_mesh, ProcessGroup):
device_mesh = DeviceMesh.from_process_group(group_or_device_mesh)
else:
assert len(group_or_device_mesh.shape) == 1, 'Only 1D DeviceMesh is accepted for row-wise sharding.'
device_mesh = group_or_device_mesh
sharding_spec = ShardingSpec(dim_size=tensor.dim(), dim_partition_dict={0: [0]})
return DTensor(tensor, device_mesh, sharding_spec)
def shard_colwise(tensor: torch.Tensor, group_or_device_mesh: Union[ProcessGroup, DeviceMesh] = None) -> DTensor:
"""
Shard the first dim of the given tensor
"""
# if the group_or_device_mesh is None, we shard the tensor with respect to the global process group
if group_or_device_mesh is None:
group_or_device_mesh = dist.GroupMember.WORLD
if isinstance(group_or_device_mesh, ProcessGroup):
device_mesh = DeviceMesh.from_process_group(group_or_device_mesh)
else:
assert len(group_or_device_mesh.shape) == 1, 'Only 1D DeviceMesh is accepted for row-wise sharding.'
device_mesh = group_or_device_mesh
sharding_spec = ShardingSpec(dim_size=tensor.dim(), dim_partition_dict={-1: [0]})
return DTensor(tensor, device_mesh, sharding_spec)