ColossalAI/applications/ColossalChat/rl_example.py
2025-04-04 10:05:16 +08:00

125 lines
4.5 KiB
Python

import argparse
import ray
import torch
from coati.distributed.launch import launch_distributed
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, default="Qwen/Qwen2.5-7B")
parser.add_argument("-d", "--dataset", type=str, default="data.jsonl")
parser.add_argument("-t", "--num-trainers", type=int, default=2)
parser.add_argument("-i", "--num-inferencer", type=int, default=2)
parser.add_argument("-g", "--num-generations", type=int, default=8, help="Number of generations per prompt.")
parser.add_argument(
"-ibs", "--inference-batch-size", type=int, default=64, help="Number of prompts to generate per step."
)
parser.add_argument(
"-imbs",
"--inference-microbatch-size",
type=int,
default=8,
help="Number of prompts to send from the producer to the consumer.",
)
parser.add_argument(
"-tbs", "--train-batch-size", type=int, default=32, help="Number of prompts to update policy model."
)
parser.add_argument(
"-tMbs",
"--train-minibatch-size",
type=int,
default=1,
help="Number of prompts per device. Number of samples = tMbs * num of generation per prompt.",
)
parser.add_argument(
"-tmbs",
"--train-microbatch-size",
type=int,
default=2,
help="Number of samples per device. PP micro batchsize when PP is activated.",
)
parser.add_argument("-b", "--backend", type=str, default="transformers", choices=["transformers", "vllm"])
parser.add_argument("-a", "--algo", type=str, default="GRPO", choices=["Simple", "GRPO", "EvalGRPO"])
args = parser.parse_args()
assert args.train_minibatch_size > 0, "Train mini batch size must be greater than 0"
assert (
args.train_minibatch_size * args.num_generations >= args.train_microbatch_size
and args.train_microbatch_size > 0
), "Train micro batch size must be greater than 0 less than train mini batch size * num generations"
ray.init(address="local", namespace="ray-example")
inference_model_config = dict(path=args.model)
train_model_config = dict(path=args.model, use_flash_attention_2=True, use_cache=False)
generate_config = dict(top_k=50, top_p=0.75, temperature=0.9)
if args.backend == "transformers":
inference_model_config.update(
dict(
use_flash_attention_2=True,
torch_dtype=torch.bfloat16,
)
)
generate_config.update(
dict(
max_length=1024 + 512,
do_sample=True,
max_new_tokens=None,
early_stopping=False,
stop_strings=["</answer>"],
)
)
elif args.backend == "vllm":
inference_model_config.update(dict(gpu_memory_utilization=0.7, enforce_eager=True, enable_chunked_prefill=True))
generate_config.update(
dict(
max_tokens=2048,
ignore_eos=True,
include_stop_str_in_output=True,
stop=["</answer>"],
)
)
else:
inference_model_config.update(
dict(
mem_fraction_static=0.6,
)
)
generate_config.update(
dict(
max_new_tokens=256,
ignore_eos=True,
)
)
launch_distributed(
num_producers=args.num_inferencer,
num_proc_per_producer=1,
num_consumer_procs=args.num_trainers,
num_episodes=10,
inference_batch_size=args.inference_batch_size,
inference_microbatch_size=args.inference_microbatch_size,
train_batch_size=args.train_batch_size,
train_minibatch_size=args.train_minibatch_size,
train_microbatch_size=args.train_microbatch_size,
dataset_config={"path": args.dataset, "max_length": 300},
dataloaders_config={},
inference_model_config=inference_model_config,
generate_config=generate_config,
num_generations=args.num_generations,
train_model_config=train_model_config,
# plugin_config={}, # for zero
plugin_config={
"pp_size": 2,
"tp_size": 1,
"microbatch_size": args.train_microbatch_size // 2,
"zero_stage": 0,
"max_norm": 1.0,
}, # for pp
inference_backend=args.backend,
master_addr="localhost",
master_port=29505,
core_algo=args.algo,
)