mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-11-04 07:58:42 +00:00 
			
		
		
		
	* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
		
			
				
	
	
		
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# coding=utf-8
 | 
						|
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
"""Blendable dataset."""
 | 
						|
 | 
						|
import time
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
 | 
						|
class BlendableDataset(torch.utils.data.Dataset):
 | 
						|
    def __init__(self, datasets, weights):
 | 
						|
        self.datasets = datasets
 | 
						|
        num_datasets = len(datasets)
 | 
						|
        assert num_datasets == len(weights)
 | 
						|
 | 
						|
        self.size = 0
 | 
						|
        for dataset in self.datasets:
 | 
						|
            self.size += len(dataset)
 | 
						|
 | 
						|
        # Normalize weights.
 | 
						|
        weights = np.array(weights, dtype=np.float64)
 | 
						|
        sum_weights = np.sum(weights)
 | 
						|
        assert sum_weights > 0.0
 | 
						|
        weights /= sum_weights
 | 
						|
 | 
						|
        # Build indices.
 | 
						|
        start_time = time.time()
 | 
						|
        assert num_datasets < 255
 | 
						|
        self.dataset_index = np.zeros(self.size, dtype=np.uint8)
 | 
						|
        self.dataset_sample_index = np.zeros(self.size, dtype=np.int64)
 | 
						|
 | 
						|
        from . import helpers
 | 
						|
 | 
						|
        helpers.build_blending_indices(
 | 
						|
            self.dataset_index,
 | 
						|
            self.dataset_sample_index,
 | 
						|
            weights,
 | 
						|
            num_datasets,
 | 
						|
            self.size,
 | 
						|
            torch.distributed.get_rank() == 0,
 | 
						|
        )
 | 
						|
        print("> elapsed time for building blendable dataset indices: " "{:.2f} (sec)".format(time.time() - start_time))
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        return self.size
 | 
						|
 | 
						|
    def __getitem__(self, idx):
 | 
						|
        dataset_idx = self.dataset_index[idx]
 | 
						|
        sample_idx = self.dataset_sample_index[idx]
 | 
						|
        return self.datasets[dataset_idx][sample_idx]
 |