mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-28 11:45:23 +00:00
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471) * [Feauture] MoE refractor; Intergration with Mixtral (#5682) * cherry pick from refractor-moe branch * tests passed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support ep + zero --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add mixtral auto policy & move pipeline forward code to modeling folder * [moe refactor] modify kernel test without Route Class * [moe refactor] add moe tensor test path environment variable to github workflow * fix typos * fix moe test bug due to the code rebase * [moe refactor] fix moe zero test, and little bug in low level zero * fix typo * add moe tensor path to github workflow * remove some useless code * fix typo & unify global variable XX_AXIS logic without using -1 * fix typo & prettifier the code * remove print code & support zero 2 test * remove useless code * reanme function * fix typo * fix typo * Further improve the test code * remove print code * [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test * [moe refactor] skip some unit test which will be refactored later * [moe refactor] fix unit import error * [moe refactor] fix circular import issues * [moe refactor] remove debug code * [moe refactor] update github workflow * [moe/zero] refactor low level optimizer (#5767) * [zero] refactor low level optimizer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] MoE refactor with newest version of ZeRO (#5801) * [zero] remove redundant members in BucketStore (#5802) * [zero] align api with previous version * [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * [hotfix]Solve the compatibility issue of zero refactor (#5823) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * Modify function parameter names to resolve compatibility issues * [zero] fix missing hook removal (#5824) * [MoE] Resolve .github conflict (#5829) * [Fix/Example] Fix Llama Inference Loading Data Type (#5763) * [fix/example] fix llama inference loading dtype * revise loading dtype of benchmark llama3 * [release] update version (#5752) * [release] update version * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [test] fix ddp plugin test * [test] fix gptj and rpc test * [devops] fix cuda ext compatibility * [inference] fix flash decoding test * [inference] fix flash decoding test * fix (#5765) * [test] Fix/fix testcase (#5770) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [Hotfix] Add missing init file in inference.executor (#5774) * [CI/tests] simplify some test case to reduce testing time (#5755) * [ci/tests] simplify some test case to reduce testing time * [ci/tests] continue to remove test case to reduce ci time cost * restore some test config * [ci/tests] continue to reduce ci time cost * [misc] update dockerfile (#5776) * [misc] update dockerfile * [misc] update dockerfile * [devops] fix docker ci (#5780) * [Inference]Add Streaming LLM (#5745) * Add Streaming LLM * add some parameters to llama_generation.py * verify streamingllm config * add test_streamingllm.py * modified according to the opinions of review * add Citation * change _block_tables tolist * [hotfix] fix llama flash attention forward (#5777) * [misc] Accelerate CI for zero and dist optim (#5758) * remove fp16 from lamb * remove d2h copy in checking states --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Test/CI] remove test cases to reduce CI duration (#5753) * [test] smaller gpt2 test case * [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py * [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py * [test] reduce test cases tests/test_zero/test_gemini/test_optim.py * Revert "[test] smaller gpt2 test case" Some tests might depend on the size of model (num of chunks) This reverts commitdf705a5210
. * [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py * [CI] smaller test model for two mwo the two modifid cases * [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there * [hotfix] fix testcase in test_fx/test_tracer (#5779) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [fix] fix test_deepfm_model & test_dlrf_model; * [fix] fix test_hf_albert & test_hf_gpt; * [gemini] optimize reduce scatter d2h copy (#5760) * [gemini] optimize reduce scatter d2h copy * [fix] fix missing reduce variable * [refactor] remove legacy async reduce scatter code * [gemini] missing sync * Revert "[refactor] remove legacy async reduce scatter code" This reverts commit58ad76d466
. * [gemini] further optimize with async all reduce * [fix] pass flag from manager to chunk * Allow building cuda extension without a device. (#5535) Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are. * [misc] fix dist logger (#5782) * [install]fix setup (#5786) * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update requirements (#5787) * [shardformer] fix import (#5788) * upgrade colossal-chat support tp_group>1, add sp for sft * upgrade ppo dpo rm script * run pre-commit * moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy * fix training script * fix ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix transformers version * remove duplicated test * fix datasets version * remove models that require huggingface auth from ci * remove local data path * update ci * remove baichuan from template test due to transformer version conflict * merge * Refactor modeling by adding attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix tests and naming Signed-off-by: char-1ee <xingjianli59@gmail.com> * Pass inference model shard configs for module init Signed-off-by: char-1ee <xingjianli59@gmail.com> * Clean up Signed-off-by: char-1ee <xingjianli59@gmail.com> * replace the customized dataloader setup with the build-in one * replace the customized dataloader setup with the build-in one * Remove flash attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * fix readme * Fix test import Signed-off-by: char-1ee <xingjianli59@gmail.com> * update sft trainning script * [Inference]refactor baichuan (#5791) * refactor baichuan * remove unused code and add TODO for lazyinit * [test] fix chatglm test kit (#5793) * [shardformer] fix modeling of bloom and falcon (#5796) * [test] fix qwen2 pytest distLarge (#5797) * [Inference] Fix flash-attn import and add model test (#5794) * Fix torch int32 dtype Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix flash-attn import Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add generalized model test Signed-off-by: char-1ee <xingjianli59@gmail.com> * Remove exposed path to model Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add default value for use_flash_attn Signed-off-by: char-1ee <xingjianli59@gmail.com> * Rename model test Signed-off-by: char-1ee <xingjianli59@gmail.com> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> * [Gemini] Use async stream to prefetch and h2d data moving (#5781) * use async stream to prefetch and h2d data moving * Remove redundant code * [gemini] quick fix on possible async operation (#5803) * [gemini] quick fix on possible async operation * [gemini] quick fix on possible async operation * [shardformer] upgrade transformers to 4.39.3 (#5815) * [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807) * [shardformer] fix modeling of gpt2 and gptj * [shardformer] fix whisper modeling * [misc] update requirements --------- Co-authored-by: ver217 <lhx0217@gmail.com> * [shardformer]upgrade transformers for mistral (#5808) * upgrade transformers for mistral * fix * fix * [shardformer]upgrade transformers for llama (#5809) * update transformers fix * fix * fix * [inference] upgrade transformers (#5810) * update transformers fix * fix * fix * fix * fix * [gemini] update transformers for gemini (#5814) --------- Co-authored-by: ver217 <lhx0217@gmail.com> * Support 4d parallel + flash attention (#5789) * support tp + sp + pp * remove comments --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> * [zero] fix hook bug * [zero] add low level optimizer back (#5839) * [zero] fix param & refactor * [zero] add back original low level opt * [zero] remove moe related * [zero] pass zero tests * [zero] refactor * [chore] add del func back * [zero] comments and naming (#5840) * [zero] modify api (#5843) * [zero] modify api * [test] remove _grad_store access in tests * [test] fix (#5857) * [CI] skip openmoe CI check * [CI] fox pre-commit * [zero] remove redundant memebr init (#5862) * [misc] remove useless code, modify the pg mesh implementation * [misc] remove useless code, modify the pg mesh implementation * [misc] use tempfile * resolve conflict with main branch * [misc] use tempfile in test_moe_checkpoint.py * [misc] remove useless code, add assertion about sequence parallel, move logger into function * [misc] remove useless code --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
243 lines
9.8 KiB
Python
243 lines
9.8 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
from colossalai.testing import parameterize, spawn
|
|
from tests.kit.model_zoo import model_zoo
|
|
from tests.test_shardformer.test_model._utils import (
|
|
build_model_from_hybrid_plugin,
|
|
check_weight,
|
|
run_forward_backward_with_hybrid_plugin,
|
|
unwrap_model,
|
|
)
|
|
|
|
|
|
def check_optim_states(org_optim, sharded_optim):
|
|
for group in org_optim.param_groups:
|
|
for p in group["params"]:
|
|
sharded_state = sharded_optim.state[p]
|
|
state = org_optim.state[p]
|
|
for key in sharded_state:
|
|
assert_close(state[key], sharded_state[key], rtol=1e-5, atol=1e-5)
|
|
|
|
|
|
def check_bert_fwd_bwd(
|
|
model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config, optim_class, sharded_optim_class
|
|
):
|
|
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
|
|
model_fn, loss_fn, test_config, optim_class, sharded_optim_class
|
|
)
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
)
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
tp_group = booster.plugin.tp_group
|
|
|
|
bert = unwrap_model(org_model, "BertModel", "bert")
|
|
sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
|
|
weight_layer_for_check = ["encoder.layer[0].output.dense", "encoder.layer[1].output.dense"]
|
|
|
|
# optimizer executes step
|
|
org_optimizer.step()
|
|
sharded_optimizer.step()
|
|
|
|
# check weights
|
|
if test_config["precision"] == "bf16":
|
|
atol, rtol = 5e-4, 1e-4
|
|
else:
|
|
atol, rtol = 5e-4, 5e-4
|
|
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
|
|
check_weight(bert, sharded_bert, weight_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1)
|
|
|
|
# check optim states
|
|
check_optim_states(org_optimizer, sharded_optimizer.optim)
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"tp_size": 1,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 4,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 1,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "fp16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "fp16",
|
|
},
|
|
{
|
|
"tp_size": 4,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "fp16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 1,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 0,
|
|
"precision": "bf16",
|
|
},
|
|
],
|
|
)
|
|
def run_bert_test(test_config, optim_class, sharded_optim_class):
|
|
"""Only call this if you've initialized distributed backend and spawned processes"""
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
test_config["use_lazy_init"] = False
|
|
test_config["pp_size"] = 1 # Do NOT test Pipeline Parallel
|
|
test_config["initial_scale"] = 2**15 # avoid overflow
|
|
target_models = [
|
|
"transformers_bert",
|
|
]
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
if name in target_models:
|
|
check_bert_fwd_bwd(
|
|
model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config, optim_class, sharded_optim_class
|
|
)
|
|
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def _run_bert_test(rank, world_size, port, optim_class, sharded_optim_class):
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
run_bert_test(optim_class, sharded_optim_class)
|
|
|
|
|
|
def check_optim_on_bert(optim_class, sharded_optim_class):
|
|
spawn(_run_bert_test, 4, optim_class, sharded_optim_class)
|
|
|
|
|
|
def check_dist_optim_state(org_optimizer, sharded_optimizer):
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
for group, tp_group in zip(org_optimizer.param_groups, sharded_optimizer.param_groups):
|
|
for p, tp in zip(group["params"], tp_group["params"]):
|
|
p_state = org_optimizer.state[p]
|
|
tp_state = sharded_optimizer.state[tp]
|
|
# TODO "exp_avg_sq_col", "exp_avg_sq_row", "exp_avg_sq"
|
|
for key in ["exp_avg_sq_row"]:
|
|
if key in tp_state.keys() and type(tp_state[key]) is torch.Tensor:
|
|
tp_is_dtensor = sharded_optimizer.param_is_dtensor_dict[id(tp)]
|
|
shard_spec = sharded_optimizer.shard_spec_dict[id(tp)]
|
|
use_zero = sharded_optimizer.use_zero
|
|
tp_optim_state = tp_state[key]
|
|
state = p_state[key]
|
|
|
|
dp_size, tp_size = (
|
|
sharded_optimizer.dp_size,
|
|
sharded_optimizer.tp_size,
|
|
)
|
|
# we start init model with first tensor parallel then zero;
|
|
# So, we gather model with first zero then tensor parallel
|
|
|
|
if tp_is_dtensor:
|
|
# col parallel
|
|
if shard_spec.sharding_sequence[0] == "R":
|
|
if use_zero:
|
|
# sq_row need gather alone dp group
|
|
# sq_col don't need gather alone dp group
|
|
if key == "exp_avg_sq_row":
|
|
state = state.chunk(dp_size, dim=-1)[dist.get_rank(sharded_optimizer.dp_group)]
|
|
|
|
# gather from tp group
|
|
# sq_row don need gather alone tp group
|
|
# sq_col need gather alone tp group
|
|
if key == "exp_avg_sq_col":
|
|
state = state.chunk(tp_size, dim=-1)[dist.get_rank(sharded_optimizer.tp_group)]
|
|
# row parallel
|
|
elif shard_spec.sharding_sequence[-1] == "R":
|
|
# TODO: this case may cause shape mismatch @duanjunwen
|
|
if use_zero and key == "exp_avg_sq_row" and state.shape[0] // tp_size % dp_size == 0:
|
|
# sq_row need gather alone dp group
|
|
# sq_col don't need gather alone dp group
|
|
|
|
state = state.chunk(dp_size, dim=-1)[dist.get_rank(sharded_optimizer.dp_group)]
|
|
|
|
# gather from tp group
|
|
# sq_row need gather alone tp group
|
|
if key == "exp_avg_sq_row":
|
|
state = state.chunk(tp_size, dim=-1)[dist.get_rank(sharded_optimizer.tp_group)]
|
|
# sq_col don't need gather alone dp group
|
|
if key == "exp_avg_sq_col":
|
|
pass
|
|
else:
|
|
return
|
|
else:
|
|
if use_zero:
|
|
# sq_row need gather alone dp group
|
|
if key == "exp_avg_sq_row":
|
|
# row residule; no gather
|
|
if state.shape[0] % dp_size != 0:
|
|
pass
|
|
else:
|
|
state = state.chunk(dp_size, dim=-1)[dist.get_rank(sharded_optimizer.dp_group)]
|
|
# sq_col don't need gather alone dp group
|
|
if key == "exp_avg_sq_col":
|
|
tp_optim_state = tp_optim_state.div_(dp_size)
|
|
# need a div;
|
|
|
|
if state.dtype != tp_optim_state.dtype:
|
|
tp_optim_state = tp_optim_state.type(state.dtype)
|
|
# TODO: some sharding checks are currently buggy, but the state values should match
|
|
# @duanjunwen
|
|
if state.shape != tp_optim_state.shape:
|
|
return
|
|
assert_close(state, tp_optim_state, atol=5e-4, rtol=1.6e-2)
|
|
|
|
|
|
def check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol):
|
|
for (org_name, org_param), (sharded_name, sharded_param) in zip(
|
|
org_model.named_parameters(), sharded_model.named_parameters()
|
|
):
|
|
if org_name in weight_layer_for_check:
|
|
assert_close(org_param, sharded_param, atol=atol, rtol=rtol)
|
|
|
|
|
|
def check_dist_grad(sharded_optimizer, org_model, sharded_model, weight_layer_for_check, atol, rtol):
|
|
for (org_name, org_param), (sharded_name, sharded_param) in zip(
|
|
org_model.named_parameters(), sharded_model.named_parameters()
|
|
):
|
|
if org_name in weight_layer_for_check:
|
|
org_grad = org_param.grad
|
|
group_id = dist.get_rank(sharded_optimizer.optim.dp_group)
|
|
dist_grad = sharded_optimizer.get_partitioned_gradients_by_param_id(group_id, id(sharded_param))
|
|
|
|
# dist_grad concat then reshape to org_grad shape
|
|
if dist_grad:
|
|
dist_grad = torch.cat([t for t in dist_grad], 0).view(org_grad.shape)
|
|
assert_close(org_grad, dist_grad, atol=atol, rtol=rtol)
|