mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-29 04:05:35 +00:00
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471) * [Feauture] MoE refractor; Intergration with Mixtral (#5682) * cherry pick from refractor-moe branch * tests passed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support ep + zero --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add mixtral auto policy & move pipeline forward code to modeling folder * [moe refactor] modify kernel test without Route Class * [moe refactor] add moe tensor test path environment variable to github workflow * fix typos * fix moe test bug due to the code rebase * [moe refactor] fix moe zero test, and little bug in low level zero * fix typo * add moe tensor path to github workflow * remove some useless code * fix typo & unify global variable XX_AXIS logic without using -1 * fix typo & prettifier the code * remove print code & support zero 2 test * remove useless code * reanme function * fix typo * fix typo * Further improve the test code * remove print code * [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test * [moe refactor] skip some unit test which will be refactored later * [moe refactor] fix unit import error * [moe refactor] fix circular import issues * [moe refactor] remove debug code * [moe refactor] update github workflow * [moe/zero] refactor low level optimizer (#5767) * [zero] refactor low level optimizer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] MoE refactor with newest version of ZeRO (#5801) * [zero] remove redundant members in BucketStore (#5802) * [zero] align api with previous version * [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * [hotfix]Solve the compatibility issue of zero refactor (#5823) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * Modify function parameter names to resolve compatibility issues * [zero] fix missing hook removal (#5824) * [MoE] Resolve .github conflict (#5829) * [Fix/Example] Fix Llama Inference Loading Data Type (#5763) * [fix/example] fix llama inference loading dtype * revise loading dtype of benchmark llama3 * [release] update version (#5752) * [release] update version * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [test] fix ddp plugin test * [test] fix gptj and rpc test * [devops] fix cuda ext compatibility * [inference] fix flash decoding test * [inference] fix flash decoding test * fix (#5765) * [test] Fix/fix testcase (#5770) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [Hotfix] Add missing init file in inference.executor (#5774) * [CI/tests] simplify some test case to reduce testing time (#5755) * [ci/tests] simplify some test case to reduce testing time * [ci/tests] continue to remove test case to reduce ci time cost * restore some test config * [ci/tests] continue to reduce ci time cost * [misc] update dockerfile (#5776) * [misc] update dockerfile * [misc] update dockerfile * [devops] fix docker ci (#5780) * [Inference]Add Streaming LLM (#5745) * Add Streaming LLM * add some parameters to llama_generation.py * verify streamingllm config * add test_streamingllm.py * modified according to the opinions of review * add Citation * change _block_tables tolist * [hotfix] fix llama flash attention forward (#5777) * [misc] Accelerate CI for zero and dist optim (#5758) * remove fp16 from lamb * remove d2h copy in checking states --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Test/CI] remove test cases to reduce CI duration (#5753) * [test] smaller gpt2 test case * [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py * [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py * [test] reduce test cases tests/test_zero/test_gemini/test_optim.py * Revert "[test] smaller gpt2 test case" Some tests might depend on the size of model (num of chunks) This reverts commitdf705a5210
. * [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py * [CI] smaller test model for two mwo the two modifid cases * [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there * [hotfix] fix testcase in test_fx/test_tracer (#5779) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [fix] fix test_deepfm_model & test_dlrf_model; * [fix] fix test_hf_albert & test_hf_gpt; * [gemini] optimize reduce scatter d2h copy (#5760) * [gemini] optimize reduce scatter d2h copy * [fix] fix missing reduce variable * [refactor] remove legacy async reduce scatter code * [gemini] missing sync * Revert "[refactor] remove legacy async reduce scatter code" This reverts commit58ad76d466
. * [gemini] further optimize with async all reduce * [fix] pass flag from manager to chunk * Allow building cuda extension without a device. (#5535) Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are. * [misc] fix dist logger (#5782) * [install]fix setup (#5786) * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update requirements (#5787) * [shardformer] fix import (#5788) * upgrade colossal-chat support tp_group>1, add sp for sft * upgrade ppo dpo rm script * run pre-commit * moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy * fix training script * fix ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix transformers version * remove duplicated test * fix datasets version * remove models that require huggingface auth from ci * remove local data path * update ci * remove baichuan from template test due to transformer version conflict * merge * Refactor modeling by adding attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix tests and naming Signed-off-by: char-1ee <xingjianli59@gmail.com> * Pass inference model shard configs for module init Signed-off-by: char-1ee <xingjianli59@gmail.com> * Clean up Signed-off-by: char-1ee <xingjianli59@gmail.com> * replace the customized dataloader setup with the build-in one * replace the customized dataloader setup with the build-in one * Remove flash attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * fix readme * Fix test import Signed-off-by: char-1ee <xingjianli59@gmail.com> * update sft trainning script * [Inference]refactor baichuan (#5791) * refactor baichuan * remove unused code and add TODO for lazyinit * [test] fix chatglm test kit (#5793) * [shardformer] fix modeling of bloom and falcon (#5796) * [test] fix qwen2 pytest distLarge (#5797) * [Inference] Fix flash-attn import and add model test (#5794) * Fix torch int32 dtype Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix flash-attn import Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add generalized model test Signed-off-by: char-1ee <xingjianli59@gmail.com> * Remove exposed path to model Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add default value for use_flash_attn Signed-off-by: char-1ee <xingjianli59@gmail.com> * Rename model test Signed-off-by: char-1ee <xingjianli59@gmail.com> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> * [Gemini] Use async stream to prefetch and h2d data moving (#5781) * use async stream to prefetch and h2d data moving * Remove redundant code * [gemini] quick fix on possible async operation (#5803) * [gemini] quick fix on possible async operation * [gemini] quick fix on possible async operation * [shardformer] upgrade transformers to 4.39.3 (#5815) * [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807) * [shardformer] fix modeling of gpt2 and gptj * [shardformer] fix whisper modeling * [misc] update requirements --------- Co-authored-by: ver217 <lhx0217@gmail.com> * [shardformer]upgrade transformers for mistral (#5808) * upgrade transformers for mistral * fix * fix * [shardformer]upgrade transformers for llama (#5809) * update transformers fix * fix * fix * [inference] upgrade transformers (#5810) * update transformers fix * fix * fix * fix * fix * [gemini] update transformers for gemini (#5814) --------- Co-authored-by: ver217 <lhx0217@gmail.com> * Support 4d parallel + flash attention (#5789) * support tp + sp + pp * remove comments --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> * [zero] fix hook bug * [zero] add low level optimizer back (#5839) * [zero] fix param & refactor * [zero] add back original low level opt * [zero] remove moe related * [zero] pass zero tests * [zero] refactor * [chore] add del func back * [zero] comments and naming (#5840) * [zero] modify api (#5843) * [zero] modify api * [test] remove _grad_store access in tests * [test] fix (#5857) * [CI] skip openmoe CI check * [CI] fox pre-commit * [zero] remove redundant memebr init (#5862) * [misc] remove useless code, modify the pg mesh implementation * [misc] remove useless code, modify the pg mesh implementation * [misc] use tempfile * resolve conflict with main branch * [misc] use tempfile in test_moe_checkpoint.py * [misc] remove useless code, add assertion about sequence parallel, move logger into function * [misc] remove useless code --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
459 lines
16 KiB
Python
459 lines
16 KiB
Python
import copy
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import nn
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.nn.optimizer.came import CAME
|
|
from colossalai.nn.optimizer.distributed_came import DistributedCAME
|
|
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
|
from colossalai.shardformer.layer._operation import _gather
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
from colossalai.tensor.d_tensor import get_layout, get_sharding_spec, is_distributed_tensor
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
from colossalai.tensor.d_tensor.sharding_spec import DimSpec
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
from colossalai.testing.random import seed_all
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
from tests.kit.model_zoo import model_zoo
|
|
from tests.test_optimizer._utils import check_dist_grad, check_dist_optim_state, check_dist_param, check_optim_states
|
|
from tests.test_shardformer.test_model._utils import (
|
|
build_model_from_hybrid_plugin,
|
|
build_model_from_low_level_zero_plugin,
|
|
run_forward_backward_with_hybrid_plugin,
|
|
run_forward_backward_with_low_level_zero_plugin,
|
|
unwrap_model,
|
|
)
|
|
|
|
HEIGHT = 128
|
|
WIDTH = 128
|
|
_TP_SPEC = DimSpec([0])
|
|
_SEED = 0
|
|
|
|
|
|
def correctness_verify(tensor1: torch.Tensor, tensor2: torch.Tensor, dtype: torch.dtype = torch.float32):
|
|
rtol = None
|
|
atol = None
|
|
if dtype is torch.float32:
|
|
rtol = 5e-04
|
|
atol = 5e-04
|
|
elif dtype is torch.float16:
|
|
rtol = 5e-2
|
|
atol = 5e-4
|
|
elif dtype is torch.bfloat16:
|
|
rtol = 4e-3
|
|
atol = 4e-3
|
|
|
|
# return torch.all(tensor1.isclose(tensor2, rtol=rtol, atol=atol))
|
|
assert_close(tensor1, tensor2, rtol=rtol, atol=atol)
|
|
|
|
|
|
# setup param groups; (For zero test optim)
|
|
def setup_param_groups_zero(model: nn.Module) -> list:
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.1,
|
|
},
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.0,
|
|
},
|
|
]
|
|
return optimizer_grouped_parameters
|
|
|
|
|
|
# setup param groups; (For base optim)
|
|
def setup_param_groups(model: nn.Module) -> list:
|
|
optimizer_grouped_parameters = [p for n, p in model.named_parameters()]
|
|
return optimizer_grouped_parameters
|
|
|
|
|
|
# setup flatten param groups, sharding spec and shape; (For dist optim)
|
|
def setup_flatten_param_groups_sharding_spec_shape(model: nn.Module) -> dict:
|
|
flatten_optimizer_grouped_parameters = []
|
|
sharding_spec = {} # {id(flatten param): get_layout(p).global_shape}
|
|
param_shape = {} # {id(flatten param): get_sharding_spec(p)}
|
|
for n, p in model.named_parameters():
|
|
flatten_p = nn.Parameter(p.clone().flatten().requires_grad_(True))
|
|
flatten_optimizer_grouped_parameters.append(flatten_p)
|
|
if is_distributed_tensor(p):
|
|
sharding_spec[id(flatten_p)] = get_sharding_spec(p)
|
|
param_shape[id(flatten_p)] = get_layout(p).global_shape
|
|
else:
|
|
sharding_spec[id(flatten_p)] = None
|
|
param_shape[id(flatten_p)] = p.shape
|
|
return flatten_optimizer_grouped_parameters, sharding_spec, param_shape
|
|
|
|
|
|
def set_dist_grad(
|
|
dist_module: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype, group: dist.ProcessGroup
|
|
) -> None:
|
|
"""
|
|
Set split grads for Tensor Parallel or ZeRO DP.
|
|
We do not need a separate treatment for ZeRO,
|
|
as the wrapper takes care of reduce-scattering grads.
|
|
"""
|
|
rank = dist.get_rank(group)
|
|
world_size = dist.get_world_size(group)
|
|
|
|
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
|
if torch_p.grad is None:
|
|
torch_p.grad = torch.zeros_like(torch_p)
|
|
|
|
is_distributed = hasattr(p, "dist_layout")
|
|
if is_distributed:
|
|
sharding = p.dist_layout.sharding_spec.sharding_sequence
|
|
split_dim = sharding.index(_TP_SPEC)
|
|
shape = torch_p.split(world_size, dim=split_dim)[rank].shape
|
|
|
|
indices = torch.arange(shape[split_dim] * rank, shape[split_dim] * (rank + 1))
|
|
# Generate grads only for the correctly split chunk
|
|
torch_p.grad.index_add_(split_dim, indices, torch.randn(shape, device=torch_p.device, dtype=g_dtype))
|
|
|
|
else:
|
|
shape = torch_p.shape
|
|
torch_p.grad += torch.randn(shape, device=torch_p.device, dtype=g_dtype)
|
|
|
|
# avoid inconsistent grad and param dtype error
|
|
orig_p = p.data
|
|
p.data = torch_p.grad.clone().to(g_dtype)
|
|
p.grad = p.data
|
|
p.data = orig_p
|
|
|
|
|
|
def set_master_param_to_shard_param(master_param_list) -> dict:
|
|
master_param_to_shard_param = {id(p): p for p in master_param_list}
|
|
return master_param_to_shard_param
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
def __init__(self):
|
|
super(MlpModel, self).__init__()
|
|
self.linear1 = nn.Linear(HEIGHT, WIDTH)
|
|
self.linear2 = nn.Linear(WIDTH, HEIGHT)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
class TPModel(nn.Module):
|
|
def __init__(self, linear1, linear2, tp_group=None):
|
|
super().__init__()
|
|
self.linear1 = Linear1D_Col.from_native_module(
|
|
linear1, process_group=tp_group, gather_output=False, overlap=True
|
|
)
|
|
self.linear2 = Linear1D_Row.from_native_module(linear2, process_group=tp_group, parallel_input=True)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
@parameterize("dtype", [torch.float32]) # torch.float32, torch.float16, torch.bfloat16
|
|
@parameterize("tp_zero_size", [(2, 2), (4, 1), (1, 4)]) # (4, 1), (1, 4)
|
|
def exam_dist_came_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
|
tp_size, zero_size = tp_zero_size
|
|
use_zero = True if zero_size > 1 else False
|
|
local_rank = dist.get_rank()
|
|
|
|
clear_layout_converter()
|
|
|
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
|
tp_group, dp_group = proc_mesh.get_group_along_axis(0), proc_mesh.get_group_along_axis(1)
|
|
|
|
torch.set_default_dtype(dtype)
|
|
# set_seed(42)
|
|
|
|
# ==============================
|
|
# Model Init
|
|
# ==============================
|
|
base_model = MlpModel().to(local_rank)
|
|
tp_model = TPModel(copy.deepcopy(base_model.linear1), copy.deepcopy(base_model.linear2), tp_group).to(local_rank)
|
|
|
|
base_param_group = setup_param_groups(base_model)
|
|
tp_param_group = setup_param_groups(tp_model)
|
|
tp_param_group_, tp_shard_spec, tp_param_shape = setup_flatten_param_groups_sharding_spec_shape(tp_model)
|
|
|
|
# ==============================
|
|
# Optimizer Init
|
|
# ==============================
|
|
base_optim = CAME(base_param_group, lr=1e-3)
|
|
dist_optim = DistributedCAME(tp_param_group, lr=1e-3)
|
|
|
|
# Setup distributed optimizer
|
|
if zero_size > 1:
|
|
dist_optim = LowLevelZeroOptimizer(
|
|
dist_optim,
|
|
overlap_communication=True,
|
|
initial_scale=128,
|
|
partition_grad=True,
|
|
dp_process_group=dp_group,
|
|
verbose=True,
|
|
)
|
|
shard_to_param = dist_optim.master_to_working_param # {id(): param tensor} but flattened
|
|
dist_optim.optim.setup_distributed(
|
|
tp_group=tp_group,
|
|
dp_group=dp_group,
|
|
shard_to_working_param=shard_to_param,
|
|
use_zero=use_zero,
|
|
)
|
|
else:
|
|
shard_to_param = set_master_param_to_shard_param(tp_param_group)
|
|
dist_optim.setup_distributed(
|
|
tp_group=tp_group,
|
|
dp_group=dp_group,
|
|
shard_to_working_param=shard_to_param,
|
|
use_zero=use_zero,
|
|
)
|
|
|
|
# ==============================
|
|
# Correctness Verify
|
|
# ==============================
|
|
seed_all(1024)
|
|
x = torch.randn(WIDTH, HEIGHT, device=local_rank)
|
|
|
|
out = base_model(x)
|
|
out_tp = tp_model(x)
|
|
|
|
if zero_size > 1:
|
|
dist_optim.backward(out_tp.sum())
|
|
out.sum().backward()
|
|
else:
|
|
out_tp.sum().backward()
|
|
out.sum().backward()
|
|
|
|
base_optim.step()
|
|
dist_optim.step()
|
|
|
|
base_optim.zero_grad()
|
|
dist_optim.zero_grad()
|
|
|
|
for p, tp_p in zip(base_param_group, tp_param_group):
|
|
param_is_distributed = is_distributed_tensor(tp_p)
|
|
if param_is_distributed:
|
|
shard_spec = get_sharding_spec(tp_p)
|
|
if len(shard_spec.sharding_sequence) >= 2:
|
|
# Col Parallel
|
|
if shard_spec.sharding_sequence[0] == "R":
|
|
tp_p = _gather(input_=tp_p, dim=-1, process_group=tp_group) # gather
|
|
# ROW Parallel
|
|
if shard_spec.sharding_sequence[-1] == "R":
|
|
tp_p = _gather(input_=tp_p, dim=0, process_group=tp_group) # gather
|
|
else:
|
|
# TP bias
|
|
tp_p = _gather(input_=tp_p, dim=-1, process_group=tp_group) # gather
|
|
else:
|
|
# No TP bias
|
|
pass
|
|
correctness_verify(p.data, tp_p.data, dtype)
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
print(f"Fwd/Bwd Test Passed")
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"stage": 1,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
],
|
|
)
|
|
def exam_bert_test_on_lowlevelzero_plugin(test_config):
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
test_config["use_lazy_init"] = False
|
|
test_config["initial_scale"] = 2**10
|
|
# check weights
|
|
if test_config["precision"] == "bf16":
|
|
atol, rtol = 5e-4, 5e-4
|
|
else:
|
|
atol, rtol = 5e-4, 5e-4
|
|
# test_config["initial_scale"] = 1
|
|
model_list = [
|
|
"transformers_bert",
|
|
]
|
|
clear_layout_converter()
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
seed_all(_SEED)
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
if name in model_list:
|
|
(
|
|
org_model,
|
|
org_optimizer,
|
|
sharded_model,
|
|
sharded_optimizer,
|
|
criterion,
|
|
booster,
|
|
) = build_model_from_low_level_zero_plugin(model_fn, loss_fn, test_config, CAME, DistributedCAME)
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_low_level_zero_plugin(
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
)
|
|
|
|
# assert same output
|
|
# assert_close(org_output, org_output, atol=atol, rtol=rtol)
|
|
|
|
weight_layer_for_check = [
|
|
"bert.encoder.layer.1.intermediate.dense",
|
|
# TODO: error in layer:
|
|
# "bert.encoder.layer.0.output.dense",
|
|
# "bert.encoder.layer.1.output.dense",
|
|
]
|
|
|
|
# assert same weight before step; pass
|
|
check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol)
|
|
|
|
# asserr loss; pass
|
|
assert_close(org_loss, sharded_loss)
|
|
|
|
# assert same grad before step
|
|
# TODO: err here; backward diff gard; Only transformers_bert pass;
|
|
check_dist_grad(sharded_optimizer, org_model, sharded_model, weight_layer_for_check, atol, rtol)
|
|
|
|
org_optimizer.step()
|
|
sharded_optimizer.step()
|
|
|
|
# assert same weight after step
|
|
check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol)
|
|
check_optim_states(org_optimizer, sharded_optimizer.optim)
|
|
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
print(f"LowLevelZeroPlugin + Bert Model Zoo Test Passed")
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"tp_size": 1,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 4,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 1,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 4,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 0,
|
|
"precision": "bf16",
|
|
},
|
|
],
|
|
)
|
|
def exam_bert_test_on_hybrid_plugin(test_config):
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
test_config["use_lazy_init"] = False
|
|
test_config["pp_size"] = 1 # Do NOT test Pipeline Parallel
|
|
test_config["initial_scale"] = 2**16 # avoid overflow
|
|
model_list = [
|
|
"transformers_bert",
|
|
]
|
|
|
|
# pass "transformers_bert",
|
|
clear_layout_converter()
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
# check weights
|
|
if test_config["precision"] == "bf16":
|
|
atol, rtol = 5e-3, 5e-3
|
|
else:
|
|
atol, rtol = 5e-3, 5e-3
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
if name in model_list:
|
|
(
|
|
org_model,
|
|
org_optimizer,
|
|
sharded_model,
|
|
sharded_optimizer,
|
|
criterion,
|
|
booster,
|
|
) = build_model_from_hybrid_plugin(model_fn, loss_fn, test_config, CAME, CAME)
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
)
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
booster.plugin.tp_group
|
|
|
|
bert = unwrap_model(org_model, "BertModel", "bert")
|
|
sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
|
|
|
|
# TODO: model
|
|
# "encoder.layer.0.output.dense.weight", "encoder.layer.1.output.dense.weight" not match
|
|
# "encoder.layer[0].output.dense", "encoder.layer[1].output.dense" not match
|
|
weight_layer_for_check = ["embeddings.word_embeddings"] # [30522, 128]
|
|
|
|
# # assert same weight before step; all pass
|
|
# check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol)
|
|
|
|
# # assert loss; all pass
|
|
# assert_close(org_loss, sharded_loss)
|
|
|
|
# # assert same grad before step; all pass
|
|
# check_dist_grad(org_model, sharded_model, weight_layer_for_check, atol, rtol)
|
|
|
|
org_optimizer.step()
|
|
sharded_optimizer.step()
|
|
|
|
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
|
|
check_dist_param(bert, sharded_bert, weight_layer_for_check, atol, rtol)
|
|
# check_weight(bert, sharded_bert, weight_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1)
|
|
|
|
# check optim states
|
|
check_dist_optim_state(org_optimizer, sharded_optimizer.optim)
|
|
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
print(f"HybridParallelPlugin + Bert Model Zoo Test Passed")
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
exam_bert_test_on_lowlevelzero_plugin() # err in TODO layer
|
|
exam_bert_test_on_hybrid_plugin() # pass
|
|
exam_dist_came_base() # pass
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_dist_came():
|
|
spawn(run_dist, nprocs=4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_dist_came()
|