ColossalAI/examples/tutorial/large_batch_optimizer/config.py
Hongxin Liu b5f9e37c70
[legacy] clean up legacy code (#4743)
* [legacy] remove outdated codes of pipeline (#4692)

* [legacy] remove cli of benchmark and update optim (#4690)

* [legacy] remove cli of benchmark and update optim

* [doc] fix cli doc test

* [legacy] fix engine clip grad norm

* [legacy] remove outdated colo tensor (#4694)

* [legacy] remove outdated colo tensor

* [test] fix test import

* [legacy] move outdated zero to legacy (#4696)

* [legacy] clean up utils (#4700)

* [legacy] clean up utils

* [example] update examples

* [legacy] clean up amp

* [legacy] fix amp module

* [legacy] clean up gpc (#4742)

* [legacy] clean up context

* [legacy] clean core, constants and global vars

* [legacy] refactor initialize

* [example] fix examples ci

* [example] fix examples ci

* [legacy] fix tests

* [example] fix gpt example

* [example] fix examples ci

* [devops] fix ci installation

* [example] fix examples ci
2023-09-18 16:31:06 +08:00

17 lines
321 B
Python

from colossalai.legacy.amp import AMP_TYPE
# hyperparameters
# BATCH_SIZE is as per GPU
# global batch size = BATCH_SIZE x data parallel size
BATCH_SIZE = 512
LEARNING_RATE = 3e-3
WEIGHT_DECAY = 0.3
NUM_EPOCHS = 2
WARMUP_EPOCHS = 1
# model config
NUM_CLASSES = 10
fp16 = dict(mode=AMP_TYPE.NAIVE)
clip_grad_norm = 1.0