mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-05-01 13:15:26 +00:00
* [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests
57 lines
1.8 KiB
Python
57 lines
1.8 KiB
Python
from ..base_extension import _Extension
|
|
|
|
|
|
class FlashAttentionSdpaCudaExtension(_Extension):
|
|
def __init__(self):
|
|
super().__init__(name="flash_attention_sdpa_cuda", support_aot=False, support_jit=False)
|
|
|
|
def is_available(self) -> bool:
|
|
# cuda extension can only be built if cuda is available
|
|
try:
|
|
import torch
|
|
|
|
cuda_available = torch.cuda.is_available()
|
|
except:
|
|
cuda_available = False
|
|
return cuda_available
|
|
|
|
def assert_compatible(self) -> bool:
|
|
pass
|
|
|
|
def build_aot(self) -> None:
|
|
raise NotImplementedError("Flash attention SDPA does not require ahead-of-time compilation.")
|
|
|
|
def build_jit(self) -> None:
|
|
raise NotImplementedError("Flash attention SDPA does not require just-in-time compilation.")
|
|
|
|
def load(self):
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
def flash_attention(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
dropout_p: float = 0.0,
|
|
scale: Optional[float] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
is_causal: bool = False,
|
|
cu_seqlens_q: Optional[torch.Tensor] = None,
|
|
cu_seqlens_kv: Optional[torch.Tensor] = None,
|
|
max_seqlen_q: Optional[int] = None,
|
|
max_seqlen_kv: Optional[int] = None,
|
|
q_indices: Optional[torch.Tensor] = None,
|
|
kv_indices: Optional[torch.Tensor] = None,
|
|
):
|
|
return torch.nn.functional.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=attention_mask,
|
|
dropout_p=dropout_p,
|
|
scale=scale,
|
|
)
|
|
|
|
return flash_attention
|