mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-01 11:55:23 +00:00
* update help information * update style * fix * minor fix * support PP training * add pp support * remove unused code * address conversation * fix memory leakage support tp+pp * move empty cache * move empty cache * add DAPO support * remove format reward * fix filtering, still buggy * small fix * add DAPO support * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * tested multi-node training; fix bind_batch bug * fix conversation; support sleep mode * support reusing excessive samples * add dynamic batching control flag * add dynamic batching control flag * refactored * fix logging --------- Co-authored-by: Tong Li <tong.li35271158@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
155 lines
5.1 KiB
Python
155 lines
5.1 KiB
Python
from collections import defaultdict
|
|
from typing import Any, Dict, List
|
|
|
|
import torch
|
|
|
|
from colossalai.shardformer.layer.loss import dist_log_prob
|
|
|
|
|
|
def unbind_batch(batch: Dict[str, torch.Tensor]) -> List[Dict[str, torch.Tensor]]:
|
|
batches = []
|
|
for k, v in batch.items():
|
|
if len(batches) == 0:
|
|
unbinded_tensors = v.unbind(0)
|
|
batches = [{k: tensor} for tensor in unbinded_tensors]
|
|
else:
|
|
unbinded_tensors = v.unbind(0)
|
|
assert len(batches) == len(unbinded_tensors)
|
|
for i, tensor in enumerate(unbinded_tensors):
|
|
batches[i][k] = tensor
|
|
return batches
|
|
|
|
|
|
def bind_batch(batches: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
|
|
batch = {}
|
|
for k in batches[0].keys():
|
|
batch[k] = torch.stack([batch[k] for batch in batches], dim=0)
|
|
return batch
|
|
|
|
|
|
def pad_batch(batches: List[Dict[str, torch.Tensor]], tokenizer: Any = None) -> List[Dict[str, torch.Tensor]]:
|
|
max_len = defaultdict(int)
|
|
for sample in batches:
|
|
for k in sample:
|
|
if k in ["input_ids", "attention_mask", "action_log_probs", "action_mask"]:
|
|
max_len[k] = max(max_len[k], sample[k].size(-1))
|
|
for idx, sample in enumerate(batches):
|
|
for k in sample:
|
|
if k in ["input_ids", "attention_mask", "action_log_probs", "action_mask"]:
|
|
# right pad with 0s
|
|
if k in ["attention_mask", "action_mask"]:
|
|
batches[idx][k] = torch.nn.functional.pad(
|
|
batches[idx][k], (0, max_len[k] - batches[idx][k].size(-1)), "constant", False
|
|
)
|
|
else:
|
|
batches[idx][k] = torch.nn.functional.pad(
|
|
batches[idx][k], (0, max_len[k] - batches[idx][k].size(-1)), "constant", 0
|
|
)
|
|
return batches
|
|
|
|
|
|
def pre_send(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
# compress mask to save bandwidth
|
|
if "attention_mask" in batch:
|
|
batch["attention_mask"] = batch["attention_mask"].to(torch.bool)
|
|
if "action_mask" in batch:
|
|
batch["action_mask"] = batch["action_mask"].to(torch.bool)
|
|
return batch
|
|
|
|
|
|
def post_recv(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
# decompress mask
|
|
if "attention_mask" in batch:
|
|
batch["attention_mask"] = batch["attention_mask"].to(torch.int)
|
|
if "action_mask" in batch:
|
|
batch["action_mask"] = batch["action_mask"].to(torch.int)
|
|
return batch
|
|
|
|
|
|
def update_by_default(data: Dict[str, Any], default: Dict[str, Any]) -> Dict[str, Any]:
|
|
data = data.copy()
|
|
for k, v in default.items():
|
|
if k not in data:
|
|
data[k] = v
|
|
return data
|
|
|
|
|
|
def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Compute the log probabilities from logits for the given labels.
|
|
|
|
Args:
|
|
logits (torch.Tensor): The input logits.
|
|
labels (torch.Tensor): The target labels.
|
|
|
|
Returns:
|
|
torch.Tensor: The log probabilities corresponding to the labels.
|
|
"""
|
|
log_probs = torch.log_softmax(logits, dim=-1)
|
|
per_label_logps = log_probs.gather(dim=-1, index=labels.unsqueeze(-1))
|
|
return per_label_logps.squeeze(-1)
|
|
|
|
|
|
def calc_action_log_probs(
|
|
logits: torch.Tensor,
|
|
sequences: torch.LongTensor,
|
|
num_actions: int,
|
|
shard_config,
|
|
vocab_size: int = None,
|
|
) -> torch.Tensor:
|
|
"""Calculate action log probs.
|
|
|
|
Args:
|
|
logits (torch.Tensor): Output tensor of Actor.forward.logits.
|
|
sequences (torch.LongTensor): Input sequences.
|
|
num_actions (int): Number of actions.
|
|
shard_config
|
|
vocab_size
|
|
|
|
|
|
Returns:
|
|
torch.Tensor: Action log probs.
|
|
"""
|
|
# labels: torch.Tensor, # [B, S] or [B, S, Vocab_size]
|
|
# logits: torch.Tensor, # [B, S, Vocab_size]
|
|
log_probs = dist_log_prob(sequences, logits, shard_config, vocab_size, logits.dtype)
|
|
log_probs = log_probs.squeeze(-1)
|
|
return log_probs[:, -num_actions:]
|
|
|
|
|
|
def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor:
|
|
"""
|
|
Compute the masked mean of a tensor along a specified dimension.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): The input tensor.
|
|
mask (torch.Tensor): The mask tensor with the same shape as the input tensor.
|
|
dim (int, optional): The dimension along which to compute the mean. Default is 1.
|
|
|
|
Returns:
|
|
torch.Tensor: The masked mean tensor.
|
|
|
|
"""
|
|
tensor = tensor * mask
|
|
tensor = tensor.sum(dim=dim)
|
|
mask_sum = mask.sum(dim=dim)
|
|
mean = tensor / (mask_sum + 1e-8)
|
|
return mean
|
|
|
|
|
|
def masked_sum(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor:
|
|
"""
|
|
Compute the masked sum of a tensor along a specified dimension.
|
|
|
|
Args:
|
|
tensor (torch.Tensor): The input tensor.
|
|
mask (torch.Tensor): The mask tensor with the same shape as the input tensor.
|
|
dim (int, optional): The dimension along which to compute the sum. Default is 1.
|
|
|
|
Returns:
|
|
torch.Tensor: The masked sum tensor.
|
|
|
|
"""
|
|
tensor = tensor * mask
|
|
return tensor.sum(dim=dim)
|