mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-05-06 07:28:12 +00:00
* [feature] support ep for deepseek v3 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix test * [shardformer] fix deepseek v3 init * [lazy] fit lora for lazy init * [example] support npu for deepseek v3 --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
88 lines
2.6 KiB
Python
88 lines
2.6 KiB
Python
# modified from tests/kit/model_zoo/transformers/mistral.py
|
|
from types import MethodType
|
|
|
|
import torch
|
|
import transformers
|
|
from transformers import AutoConfig
|
|
|
|
from ..registry import ModelAttribute, model_zoo
|
|
|
|
# ===============================
|
|
# Register single-sentence Mixtral
|
|
# ===============================
|
|
|
|
|
|
def data_gen():
|
|
# Generated from following code snippet
|
|
#
|
|
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
# tokenizer = AutoTokenizer.from_pretrained("mixtralai/Mixtral-7B-v0.1")
|
|
# input = 'My favourite condiment is vinegar' (last two words repeated to satisfy length requirement)
|
|
# tokenized_input = tokenizer([input], return_tensors="pt")
|
|
# input_ids = tokenized_input['input_ids']
|
|
# attention_mask = tokenized_input['attention_mask']
|
|
input_ids = torch.tensor([[1, 22, 55, 77, 532, 349, 43, 22]], dtype=torch.int64)
|
|
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
|
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
def data_gen_for_lm():
|
|
# LM data gen
|
|
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
|
|
data = data_gen()
|
|
data["labels"] = data["input_ids"].clone()
|
|
return data
|
|
|
|
|
|
# define output transform function
|
|
output_transform_fn = lambda x: x
|
|
|
|
# define loss function
|
|
loss_fn = lambda x: x[0].mean()
|
|
loss_fn_for_lm = lambda x: x.loss
|
|
|
|
|
|
def init_deepseek():
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
"deepseek-ai/DeepSeek-V3",
|
|
hidden_size=128,
|
|
intermediate_size=320,
|
|
kv_lora_rank=4,
|
|
moe_intermediate_size=32,
|
|
num_attention_heads=4,
|
|
num_experts_per_tok=4,
|
|
n_group=4,
|
|
num_hidden_layers=3,
|
|
num_key_value_heads=4,
|
|
first_k_dense_replace=1,
|
|
q_lora_rank=8,
|
|
torch_dtype="bfloat16",
|
|
n_routed_experts=16,
|
|
topk_group=2,
|
|
v_head_dim=32,
|
|
qk_nope_head_dim=32,
|
|
qk_rope_head_dim=32,
|
|
trust_remote_code=True,
|
|
vocab_size=2048,
|
|
)
|
|
|
|
if hasattr(config, "pad_token_id"):
|
|
config.pad_token_id = config.eos_token_id
|
|
model = transformers.AutoModelForCausalLM.from_config(config, trust_remote_code=True)
|
|
# enable grad for moe layers
|
|
for m in model.modules():
|
|
if m.__class__.__name__ == "DeepseekV3MoE":
|
|
m.moe_infer = MethodType(m.moe_infer.__wrapped__, m)
|
|
return model
|
|
|
|
|
|
model_zoo.register(
|
|
name="transformers_deepseek_v3",
|
|
model_fn=init_deepseek,
|
|
data_gen_fn=data_gen_for_lm,
|
|
output_transform_fn=output_transform_fn,
|
|
loss_fn=loss_fn_for_lm,
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
)
|