mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-10-30 05:22:41 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			115 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| # -*- encoding: utf-8 -*-
 | |
| 
 | |
| from functools import partial
 | |
| 
 | |
| import colossalai
 | |
| import pytest
 | |
| import torch
 | |
| import torch.distributed as dist
 | |
| import torch.multiprocessing as mp
 | |
| from colossalai.core import global_context as gpc
 | |
| from colossalai.testing import rerun_on_exception
 | |
| from colossalai.utils import free_port
 | |
| from colossalai.zero.init_ctx import ZeroInitContext
 | |
| from colossalai.zero.sharded_model.utils import col_model_deepcopy
 | |
| from colossalai.zero.sharded_optim._utils import has_inf_or_nan
 | |
| from tests.components_to_test.registry import non_distributed_component_funcs
 | |
| from torch.nn.parallel import DistributedDataParallel as DDP
 | |
| 
 | |
| from common import (MP_PARALLEL_CONFIG, ZERO_PARALLEL_CONFIG, check_params, check_sharded_model_params)
 | |
| 
 | |
| 
 | |
| def run_dist(rank, world_size, port, parallel_config):
 | |
|     colossalai.launch(config=parallel_config,
 | |
|                       rank=rank,
 | |
|                       world_size=world_size,
 | |
|                       host='localhost',
 | |
|                       port=port,
 | |
|                       backend='nccl')
 | |
| 
 | |
|     test_models = ['repeated_computed_layers', 'resnet18', 'bert']
 | |
|     for model_name in test_models:
 | |
|         get_components_func = non_distributed_component_funcs.get_callable(model_name)
 | |
|         model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
 | |
|         with ZeroInitContext(target_device=torch.cuda.current_device(),
 | |
|                              shard_strategy=gpc.config.zero.model_config.shard_strategy,
 | |
|                              shard_param=True):
 | |
|             colo_model = model_builder(checkpoint=True)
 | |
| 
 | |
|         colo_optimizer = optimizer_class(colo_model.parameters(), lr=1e-3)
 | |
|         engine, train_dataloader, _, _ = colossalai.initialize(colo_model,
 | |
|                                                                optimizer=colo_optimizer,
 | |
|                                                                criterion=criterion,
 | |
|                                                                train_dataloader=train_dataloader)
 | |
|         torch_model = model_builder(checkpoint=True).half()
 | |
|         col_model_deepcopy(engine.model, torch_model)
 | |
|         torch_model = torch_model.cuda().float()
 | |
| 
 | |
|         engine.train()
 | |
|         torch_optimizer = optimizer_class(torch_model.parameters(), lr=1e-3)
 | |
| 
 | |
|         if dist.get_world_size() > 1:
 | |
|             torch_model = DDP(torch_model)
 | |
| 
 | |
|         i = 0
 | |
|         for data, label in train_dataloader:
 | |
|             if i > 4:
 | |
|                 break
 | |
| 
 | |
|             data, label = data.cuda(), label.cuda()
 | |
| 
 | |
|             engine.zero_grad()
 | |
|             torch_optimizer.zero_grad()
 | |
| 
 | |
|             if criterion:
 | |
|                 output = engine(data)
 | |
|                 loss = engine.criterion(output, label)
 | |
| 
 | |
|                 torch_output = torch_model(data)
 | |
|                 torch_loss = engine.criterion(torch_output, label)
 | |
|             else:
 | |
|                 loss = engine(data, label)
 | |
|                 torch_loss = torch_model(data, label)
 | |
| 
 | |
|             engine.backward(loss)
 | |
|             engine.step()
 | |
| 
 | |
|             torch_loss.backward()
 | |
| 
 | |
|             for param in torch_model.parameters():
 | |
|                 if param.grad is not None:
 | |
|                     assert not has_inf_or_nan(param.grad)
 | |
| 
 | |
|             torch_optimizer.step()
 | |
|             i += 1
 | |
| 
 | |
|         if parallel_config == MP_PARALLEL_CONFIG:
 | |
|             check_params(torch_model, colo_model, loose=True)
 | |
|         elif parallel_config == ZERO_PARALLEL_CONFIG:
 | |
|             check_sharded_model_params(torch_model, colo_model, loose=True)
 | |
| 
 | |
| 
 | |
| # FIXME: enable this test in next PR
 | |
| 
 | |
| 
 | |
| @pytest.mark.skip
 | |
| @pytest.mark.dist
 | |
| @pytest.mark.parametrize("world_size", [2, 4])
 | |
| @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
 | |
| def test_mp_engine(world_size):
 | |
|     run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=MP_PARALLEL_CONFIG)
 | |
|     mp.spawn(run_func, nprocs=world_size)
 | |
| 
 | |
| 
 | |
| @pytest.mark.dist
 | |
| @pytest.mark.parametrize("world_size", [1, 2])
 | |
| @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
 | |
| def test_zero_engine(world_size):
 | |
|     run_func = partial(run_dist, world_size=world_size, port=free_port(), parallel_config=ZERO_PARALLEL_CONFIG)
 | |
|     mp.spawn(run_func, nprocs=world_size)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     test_zero_engine(world_size=4)
 |