mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-04-27 19:36:13 +00:00
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471) * [Feauture] MoE refractor; Intergration with Mixtral (#5682) * cherry pick from refractor-moe branch * tests passed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support ep + zero --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add mixtral auto policy & move pipeline forward code to modeling folder * [moe refactor] modify kernel test without Route Class * [moe refactor] add moe tensor test path environment variable to github workflow * fix typos * fix moe test bug due to the code rebase * [moe refactor] fix moe zero test, and little bug in low level zero * fix typo * add moe tensor path to github workflow * remove some useless code * fix typo & unify global variable XX_AXIS logic without using -1 * fix typo & prettifier the code * remove print code & support zero 2 test * remove useless code * reanme function * fix typo * fix typo * Further improve the test code * remove print code * [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test * [moe refactor] skip some unit test which will be refactored later * [moe refactor] fix unit import error * [moe refactor] fix circular import issues * [moe refactor] remove debug code * [moe refactor] update github workflow * [moe/zero] refactor low level optimizer (#5767) * [zero] refactor low level optimizer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] MoE refactor with newest version of ZeRO (#5801) * [zero] remove redundant members in BucketStore (#5802) * [zero] align api with previous version * [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * [hotfix]Solve the compatibility issue of zero refactor (#5823) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * Modify function parameter names to resolve compatibility issues * [zero] fix missing hook removal (#5824) * [MoE] Resolve .github conflict (#5829) * [Fix/Example] Fix Llama Inference Loading Data Type (#5763) * [fix/example] fix llama inference loading dtype * revise loading dtype of benchmark llama3 * [release] update version (#5752) * [release] update version * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [test] fix ddp plugin test * [test] fix gptj and rpc test * [devops] fix cuda ext compatibility * [inference] fix flash decoding test * [inference] fix flash decoding test * fix (#5765) * [test] Fix/fix testcase (#5770) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [Hotfix] Add missing init file in inference.executor (#5774) * [CI/tests] simplify some test case to reduce testing time (#5755) * [ci/tests] simplify some test case to reduce testing time * [ci/tests] continue to remove test case to reduce ci time cost * restore some test config * [ci/tests] continue to reduce ci time cost * [misc] update dockerfile (#5776) * [misc] update dockerfile * [misc] update dockerfile * [devops] fix docker ci (#5780) * [Inference]Add Streaming LLM (#5745) * Add Streaming LLM * add some parameters to llama_generation.py * verify streamingllm config * add test_streamingllm.py * modified according to the opinions of review * add Citation * change _block_tables tolist * [hotfix] fix llama flash attention forward (#5777) * [misc] Accelerate CI for zero and dist optim (#5758) * remove fp16 from lamb * remove d2h copy in checking states --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Test/CI] remove test cases to reduce CI duration (#5753) * [test] smaller gpt2 test case * [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py * [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py * [test] reduce test cases tests/test_zero/test_gemini/test_optim.py * Revert "[test] smaller gpt2 test case" Some tests might depend on the size of model (num of chunks) This reverts commitdf705a5210
. * [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py * [CI] smaller test model for two mwo the two modifid cases * [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there * [hotfix] fix testcase in test_fx/test_tracer (#5779) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [fix] fix test_deepfm_model & test_dlrf_model; * [fix] fix test_hf_albert & test_hf_gpt; * [gemini] optimize reduce scatter d2h copy (#5760) * [gemini] optimize reduce scatter d2h copy * [fix] fix missing reduce variable * [refactor] remove legacy async reduce scatter code * [gemini] missing sync * Revert "[refactor] remove legacy async reduce scatter code" This reverts commit58ad76d466
. * [gemini] further optimize with async all reduce * [fix] pass flag from manager to chunk * Allow building cuda extension without a device. (#5535) Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are. * [misc] fix dist logger (#5782) * [install]fix setup (#5786) * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update requirements (#5787) * [shardformer] fix import (#5788) * upgrade colossal-chat support tp_group>1, add sp for sft * upgrade ppo dpo rm script * run pre-commit * moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy * fix training script * fix ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix transformers version * remove duplicated test * fix datasets version * remove models that require huggingface auth from ci * remove local data path * update ci * remove baichuan from template test due to transformer version conflict * merge * Refactor modeling by adding attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix tests and naming Signed-off-by: char-1ee <xingjianli59@gmail.com> * Pass inference model shard configs for module init Signed-off-by: char-1ee <xingjianli59@gmail.com> * Clean up Signed-off-by: char-1ee <xingjianli59@gmail.com> * replace the customized dataloader setup with the build-in one * replace the customized dataloader setup with the build-in one * Remove flash attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * fix readme * Fix test import Signed-off-by: char-1ee <xingjianli59@gmail.com> * update sft trainning script * [Inference]refactor baichuan (#5791) * refactor baichuan * remove unused code and add TODO for lazyinit * [test] fix chatglm test kit (#5793) * [shardformer] fix modeling of bloom and falcon (#5796) * [test] fix qwen2 pytest distLarge (#5797) * [Inference] Fix flash-attn import and add model test (#5794) * Fix torch int32 dtype Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix flash-attn import Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add generalized model test Signed-off-by: char-1ee <xingjianli59@gmail.com> * Remove exposed path to model Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add default value for use_flash_attn Signed-off-by: char-1ee <xingjianli59@gmail.com> * Rename model test Signed-off-by: char-1ee <xingjianli59@gmail.com> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> * [Gemini] Use async stream to prefetch and h2d data moving (#5781) * use async stream to prefetch and h2d data moving * Remove redundant code * [gemini] quick fix on possible async operation (#5803) * [gemini] quick fix on possible async operation * [gemini] quick fix on possible async operation * [shardformer] upgrade transformers to 4.39.3 (#5815) * [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807) * [shardformer] fix modeling of gpt2 and gptj * [shardformer] fix whisper modeling * [misc] update requirements --------- Co-authored-by: ver217 <lhx0217@gmail.com> * [shardformer]upgrade transformers for mistral (#5808) * upgrade transformers for mistral * fix * fix * [shardformer]upgrade transformers for llama (#5809) * update transformers fix * fix * fix * [inference] upgrade transformers (#5810) * update transformers fix * fix * fix * fix * fix * [gemini] update transformers for gemini (#5814) --------- Co-authored-by: ver217 <lhx0217@gmail.com> * Support 4d parallel + flash attention (#5789) * support tp + sp + pp * remove comments --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> * [zero] fix hook bug * [zero] add low level optimizer back (#5839) * [zero] fix param & refactor * [zero] add back original low level opt * [zero] remove moe related * [zero] pass zero tests * [zero] refactor * [chore] add del func back * [zero] comments and naming (#5840) * [zero] modify api (#5843) * [zero] modify api * [test] remove _grad_store access in tests * [test] fix (#5857) * [CI] skip openmoe CI check * [CI] fox pre-commit * [zero] remove redundant memebr init (#5862) * [misc] remove useless code, modify the pg mesh implementation * [misc] remove useless code, modify the pg mesh implementation * [misc] use tempfile * resolve conflict with main branch * [misc] use tempfile in test_moe_checkpoint.py * [misc] remove useless code, add assertion about sequence parallel, move logger into function * [misc] remove useless code --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
272 lines
11 KiB
Python
272 lines
11 KiB
Python
import gc
|
|
import itertools
|
|
from functools import reduce
|
|
from operator import mul
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch.distributed as dist
|
|
from torch.distributed import ProcessGroup
|
|
|
|
|
|
def prod(nums: List[int]) -> int:
|
|
"""Product of a list of numbers.
|
|
|
|
Args:
|
|
nums (List[int]): A list of numbers.
|
|
|
|
Returns:
|
|
int: The product of the numbers.
|
|
"""
|
|
return reduce(mul, nums)
|
|
|
|
|
|
class ProcessGroupMesh:
|
|
"""A helper class to manage the process group mesh. It only describes how to organize process groups, and it's decoupled with parallel method.
|
|
It just initialize process groups and cache them. The parallel method should manage them and use them to do the parallel computation.
|
|
|
|
We use a ND-tuple to represent the process group mesh. And a ND-coordinate is to represent each process.
|
|
For example, ``(0, 1, 0)`` represents the process whose rank is 2 in a 3D process group mesh with size ``(2, 2, 2)``.
|
|
|
|
Args:
|
|
*size (int): The size of each dimension of the process group mesh. The product of the size must be equal to the world size.
|
|
|
|
Attributes:
|
|
shape (Tuple[int, ...]): The shape of the process group mesh.
|
|
rank (int): The rank of the current process.
|
|
"""
|
|
|
|
def __init__(self, *size: int) -> None:
|
|
assert dist.is_initialized(), "Please initialize torch.distributed first."
|
|
world_size = dist.get_world_size()
|
|
prod_size = prod(size)
|
|
assert (
|
|
prod_size == world_size
|
|
), f"The product of the size({prod_size}) must be equal to the world size({world_size})."
|
|
|
|
self._shape = size
|
|
self._rank = dist.get_rank()
|
|
self._coord = ProcessGroupMesh.unravel(self._rank, self._shape)
|
|
self._ranks_to_group: Dict[Tuple[int, ...], ProcessGroup] = {}
|
|
self._group_to_ranks: Dict[ProcessGroup, Tuple[int, ...]] = {}
|
|
|
|
def destroy_mesh_process_groups(self):
|
|
r"""
|
|
Destructor method for the ProcessGroupMesh class.
|
|
|
|
When the ProcessGroupMesh object is deleted or goes out of scope, this method is called. It is responsible for
|
|
cleaning up any process groups that were created during the lifetime of the object.
|
|
|
|
Note:
|
|
All process groups in PyTorch are represented as global variables, and they may not be automatically destroyed
|
|
when the ProcessGroupMesh's lifetime ends. This method manually destroys the process groups to release
|
|
system resources.
|
|
"""
|
|
for group in self._ranks_to_group.values():
|
|
dist.destroy_process_group(group)
|
|
|
|
# Manually clear all process groups to save memory
|
|
gc.collect()
|
|
|
|
@property
|
|
def shape(self) -> Tuple[int, ...]:
|
|
return self._shape
|
|
|
|
@property
|
|
def rank(self) -> int:
|
|
return self._rank
|
|
|
|
def size(self, dim: Optional[int] = None) -> Union[int, Tuple[int, ...]]:
|
|
"""Get the size of the process group mesh.
|
|
|
|
Args:
|
|
dim (Optional[int], optional): Dimension of the process group mesh. `None` means all dimensions. Defaults to None.
|
|
|
|
Returns:
|
|
Union[int, Tuple[int, ...]]: Size of the target dimension or the whole process group mesh.
|
|
"""
|
|
if dim is None:
|
|
return self._shape
|
|
else:
|
|
return self._shape[dim]
|
|
|
|
def coordinate(self, dim: Optional[int] = None) -> Union[int, Tuple[int, ...]]:
|
|
"""Get the coordinate of the process group mesh.
|
|
|
|
Args:
|
|
dim (Optional[int], optional): Dimension of the process group mesh. `None` means all dimensions. Defaults to None.
|
|
|
|
Returns:
|
|
Union[int, Tuple[int, ...]]: Coordinate of the target dimension or the whole process group mesh.
|
|
"""
|
|
if dim is None:
|
|
return self._coord
|
|
else:
|
|
return self._coord[dim]
|
|
|
|
@staticmethod
|
|
def unravel(rank: int, shape: Tuple[int, ...]) -> Tuple[int, ...]:
|
|
"""Convert a rank to a coordinate.
|
|
|
|
Args:
|
|
rank (int): Rank to be converted.
|
|
shape (Tuple[int, ...]): Shape of the process group mesh.
|
|
|
|
Returns:
|
|
Tuple[int, ...]: Coordinate of the rank.
|
|
"""
|
|
return np.unravel_index(rank, shape)
|
|
|
|
@staticmethod
|
|
def ravel(coord: Tuple[int, ...], shape: Tuple[int, ...], mode: str = "raise") -> int:
|
|
"""Convert a coordinate to a rank.
|
|
mode: ['raise', 'wrap', 'clip'], see https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html.
|
|
with wrap, index out of range would be wrapped around.
|
|
For instance, ravel((0, i, 0), (1, 2, 1), 'wrap') returns (i % 2)
|
|
|
|
Args:
|
|
coords (Tuple[int, ...]): Coordinate to be converted.
|
|
shape (Tuple[int, ...]): Shape of the process group mesh.
|
|
mode (Optional[str]): The mode for numpy.ravel_multi_index.
|
|
|
|
Returns:
|
|
int: Rank of the coordinate.
|
|
"""
|
|
|
|
assert mode in ["raise", "wrap", "clip"]
|
|
return int(np.ravel_multi_index(coord, shape, mode))
|
|
|
|
def get_group(self, ranks_in_group: List[int], backend: Optional[str] = None) -> ProcessGroup:
|
|
"""Get the process group with the given ranks. It the process group doesn't exist, it will be created.
|
|
|
|
Args:
|
|
ranks_in_group (List[int]): Ranks in the process group.
|
|
backend (Optional[str], optional): Backend of the process group. Defaults to None.
|
|
|
|
Returns:
|
|
ProcessGroup: The process group with the given ranks.
|
|
"""
|
|
ranks_in_group = sorted(ranks_in_group)
|
|
if tuple(ranks_in_group) not in self._group_to_ranks:
|
|
group = dist.new_group(ranks_in_group, backend=backend)
|
|
self._ranks_to_group[tuple(ranks_in_group)] = group
|
|
self._group_to_ranks[group] = tuple(ranks_in_group)
|
|
return self._ranks_to_group[tuple(ranks_in_group)]
|
|
|
|
def get_ranks_in_group(self, group: ProcessGroup) -> List[int]:
|
|
"""Get the ranks in the given process group. The process group must be created by this class.
|
|
|
|
Args:
|
|
group (ProcessGroup): The process group.
|
|
|
|
Returns:
|
|
List[int]: Ranks in the process group.
|
|
"""
|
|
return list(self._group_to_ranks[group])
|
|
|
|
@staticmethod
|
|
def get_coords_along_axis(
|
|
base_coord: Tuple[int, ...], axis: Union[int, List[int]], indices_at_axis: Union[List[int], List[List[int]]]
|
|
) -> List[Tuple[int, ...]]:
|
|
"""Get coordinates along the given axis.
|
|
|
|
Args:
|
|
base_coord (Tuple[int, ...]): Base coordinate which the coordinates along the axis are based on.
|
|
axis (int): Axis along which the coordinates are generated.
|
|
indices_at_axis (List[int]): Indices at the axis.
|
|
|
|
Returns:
|
|
List[Tuple[int, ...]]: Coordinates along the axis.
|
|
"""
|
|
if isinstance(axis, int):
|
|
axis = [
|
|
axis,
|
|
]
|
|
assert isinstance(indices_at_axis[0], int), f"Expected int, but got {type(indices_at_axis[0])}."
|
|
indices_at_axis = [
|
|
indices_at_axis,
|
|
]
|
|
|
|
def add_index(base_coord, axis, indices_at_axis):
|
|
coords_in_group = []
|
|
for idx in indices_at_axis:
|
|
coords_in_group.append(base_coord[:axis] + (idx,) + base_coord[axis + 1 :])
|
|
return coords_in_group
|
|
|
|
coords_in_group = [base_coord]
|
|
for ax, indices_at_ax in zip(axis, indices_at_axis):
|
|
new_coords_in_group = []
|
|
for coords in coords_in_group:
|
|
new_coords_in_group += add_index(coords, ax, indices_at_ax)
|
|
coords_in_group = new_coords_in_group
|
|
|
|
return coords_in_group
|
|
|
|
def create_group_along_axis(
|
|
self,
|
|
axis: Union[int, List[int]],
|
|
indices_at_axis: Optional[Union[List[int], List[List[int]]]] = None,
|
|
backend: Optional[str] = None,
|
|
) -> ProcessGroup:
|
|
"""Create all process groups along the given axis, and return the one which the current process belongs to.
|
|
|
|
Args:
|
|
axis (int): Axis along which the process groups are created.
|
|
indices_at_axis (Optional[List[int]], optional): Indices at the axis. Defaults to None.
|
|
backend (Optional[str], optional): Backend of the process group. Defaults to None.
|
|
|
|
Returns:
|
|
ProcessGroup: The process group along the given axis which the current process belongs to.
|
|
"""
|
|
if isinstance(axis, int):
|
|
axis = [
|
|
axis,
|
|
]
|
|
if indices_at_axis is not None:
|
|
assert isinstance(indices_at_axis[0], int)
|
|
indices_at_axis = [
|
|
indices_at_axis,
|
|
]
|
|
|
|
indices_at_axis = indices_at_axis or [list(range(self._shape[ax])) for ax in axis]
|
|
reduced_shape = list(self._shape)
|
|
# the choices on the axis are reduced to 1, since it's determined by `indices_at_axis`
|
|
for ax in axis:
|
|
reduced_shape[ax] = 1
|
|
target_group = None
|
|
# use Cartesian product to generate all combinations of coordinates
|
|
for base_coord in itertools.product(*[range(s) for s in reduced_shape]):
|
|
coords_in_group = ProcessGroupMesh.get_coords_along_axis(base_coord, axis, indices_at_axis)
|
|
ranks_in_group = tuple([ProcessGroupMesh.ravel(coord, self._shape) for coord in coords_in_group])
|
|
group = self.get_group(ranks_in_group, backend=backend)
|
|
if self._rank in ranks_in_group:
|
|
target_group = group
|
|
return target_group
|
|
|
|
def get_group_along_axis(
|
|
self, axis: Union[int, List[int]], indices_at_axis: Optional[List[int]] = None, backend: Optional[str] = None
|
|
) -> ProcessGroup:
|
|
"""Get the process group along the given axis which the current process belongs to. If the process group doesn't exist, it will be created.
|
|
|
|
Args:
|
|
axis (int or list of int): Axes along which the process groups are created.
|
|
indices_at_axis (Optional[List[int]], optional): Indices at the axis. Defaults to None.
|
|
backend (Optional[str], optional): Backend of the process group. Defaults to None.
|
|
|
|
Returns:
|
|
ProcessGroup: The process group along the given axis which the current process belongs to.
|
|
"""
|
|
indices_at_axis = indices_at_axis
|
|
if indices_at_axis is None:
|
|
if isinstance(axis, (list, tuple)):
|
|
indices_at_axis = list(list(range(self._shape[ax])) for ax in axis)
|
|
else:
|
|
indices_at_axis = list(range(self._shape[axis]))
|
|
|
|
coords_in_group = ProcessGroupMesh.get_coords_along_axis(self._coord, axis, indices_at_axis)
|
|
ranks_in_group = tuple([ProcessGroupMesh.ravel(coord, self._shape) for coord in coords_in_group])
|
|
if ranks_in_group not in self._ranks_to_group:
|
|
# no need to cache it explicitly, since it will be cached in `create_group_along_axis`
|
|
return self.create_group_along_axis(axis, indices_at_axis, backend=backend)
|
|
return self._ranks_to_group[ranks_in_group]
|