1
0
mirror of https://github.com/hpcaitech/ColossalAI.git synced 2025-05-10 17:38:32 +00:00
ColossalAI/colossalai/shardformer/layer/moe/routers.py
Haze188 416580b314
[MoE/ZeRO] Moe refactor with zero refactor ()
* [moe] removed openmoe-coupled code and rectify mixstral code ()

* [Feauture] MoE refractor; Intergration with Mixtral  ()

* cherry pick from refractor-moe branch

* tests passed

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support ep + zero

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* add mixtral auto policy & move pipeline forward code to modeling folder

* [moe refactor] modify kernel test without Route Class

* [moe refactor] add moe tensor test path environment variable to github workflow

* fix typos

* fix moe test bug due to the code rebase

* [moe refactor] fix moe zero test, and little bug in low level zero

* fix typo

* add moe tensor path to github workflow

* remove some useless code

* fix typo & unify global variable XX_AXIS logic without using -1

* fix typo & prettifier the code

* remove print code & support zero 2 test

* remove useless code

* reanme function

* fix typo

* fix typo

* Further improve the test code

* remove print code

* [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test

* [moe refactor] skip some unit test which will be refactored later

* [moe refactor] fix unit import error

* [moe refactor] fix circular import issues

* [moe refactor] remove debug code

* [moe refactor] update github workflow

* [moe/zero] refactor low level optimizer ()

* [zero] refactor low level optimizer

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] MoE refactor with newest version of ZeRO ()

* [zero] remove redundant members in BucketStore ()

* [zero] align api with previous version

* [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug ()

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* [hotfix]Solve the compatibility issue of zero refactor ()

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* Modify function parameter names to resolve compatibility issues

* [zero] fix missing hook removal ()

* [MoE] Resolve .github conflict ()

* [Fix/Example] Fix Llama Inference Loading Data Type ()

* [fix/example] fix llama inference loading dtype

* revise loading dtype of benchmark llama3

* [release] update version ()

* [release] update version

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [test] fix ddp plugin test

* [test] fix gptj and rpc test

* [devops] fix cuda ext compatibility

* [inference] fix flash decoding test

* [inference] fix flash decoding test

* fix ()

* [test] Fix/fix testcase ()

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [Hotfix] Add missing init file in inference.executor ()

* [CI/tests] simplify some test case to reduce testing time ()

* [ci/tests] simplify some test case to reduce testing time

* [ci/tests] continue to remove test case to reduce ci time cost

* restore some test config

* [ci/tests] continue to reduce ci time cost

* [misc] update dockerfile ()

* [misc] update dockerfile

* [misc] update dockerfile

* [devops] fix docker ci ()

* [Inference]Add Streaming LLM ()

* Add Streaming LLM

* add some parameters to llama_generation.py

* verify streamingllm config

* add test_streamingllm.py

* modified according to the opinions of review

* add Citation

* change _block_tables tolist

* [hotfix] fix llama flash attention forward ()

* [misc] Accelerate CI for zero and dist optim ()

* remove fp16 from lamb

* remove d2h copy in checking states

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Test/CI] remove test cases to reduce CI duration ()

* [test] smaller gpt2 test case

* [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py

* [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py

* [test] reduce test cases tests/test_zero/test_gemini/test_optim.py

* Revert "[test] smaller gpt2 test case"

Some tests might depend on the size of model (num of chunks)

This reverts commit df705a5210.

* [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py

* [CI] smaller test model for two mwo the two modifid cases

* [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there

* [hotfix] fix testcase in test_fx/test_tracer ()

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [fix] fix test_deepfm_model & test_dlrf_model;

* [fix] fix test_hf_albert & test_hf_gpt;

* [gemini] optimize reduce scatter d2h copy ()

* [gemini] optimize reduce scatter d2h copy

* [fix] fix missing reduce variable

* [refactor] remove legacy async reduce scatter code

* [gemini] missing sync

* Revert "[refactor] remove legacy async reduce scatter code"

This reverts commit 58ad76d466.

* [gemini] further optimize with async all reduce

* [fix] pass flag from manager to chunk

* Allow building cuda extension without a device. ()

Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are.

* [misc] fix dist logger ()

* [install]fix setup ()

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update requirements ()

* [shardformer] fix import ()

* upgrade colossal-chat support tp_group>1, add sp for sft

* upgrade ppo dpo rm script

* run pre-commit

* moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy

* fix training script

* fix ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix transformers version

* remove duplicated test

* fix datasets version

* remove models that require huggingface auth from ci

* remove local data path

* update ci

* remove baichuan from template test due to transformer version conflict

* merge

* Refactor modeling by adding attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix tests and naming

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Pass inference model shard configs for module init

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Clean up

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* replace the customized dataloader setup with the build-in one

* replace the customized dataloader setup with the build-in one

* Remove flash attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* fix readme

* Fix test import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* update sft trainning script

* [Inference]refactor baichuan ()

* refactor baichuan

* remove unused code and add TODO for lazyinit

* [test] fix chatglm test kit ()

* [shardformer] fix modeling of bloom and falcon ()

* [test] fix qwen2 pytest distLarge ()

* [Inference] Fix flash-attn import and add model test ()

* Fix torch int32 dtype

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix flash-attn import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add generalized model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Remove exposed path to model

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add default value for use_flash_attn

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Rename model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* [Gemini] Use async stream to prefetch and h2d data moving ()

* use async stream to prefetch and h2d data moving

* Remove redundant code

* [gemini] quick fix on possible async operation ()

* [gemini] quick fix on possible async operation

* [gemini] quick fix on possible async operation

* [shardformer] upgrade transformers to 4.39.3 ()

* [shardformer]upgrade transformers for gpt2/gptj/whisper ()

* [shardformer] fix modeling of gpt2 and gptj

* [shardformer] fix whisper modeling

* [misc] update requirements

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* [shardformer]upgrade transformers for mistral ()

* upgrade transformers for mistral

* fix

* fix

* [shardformer]upgrade transformers for llama ()

* update transformers

fix

* fix

* fix

* [inference] upgrade transformers ()

* update transformers

fix

* fix

* fix

* fix

* fix

* [gemini] update transformers for gemini ()

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* Support 4d parallel + flash attention ()

* support tp + sp + pp

* remove comments

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>

* [zero] fix hook bug

* [zero] add low level optimizer back ()

* [zero] fix param & refactor

* [zero] add back original low level opt

* [zero] remove moe related

* [zero] pass zero tests

* [zero] refactor

* [chore] add del func back

* [zero] comments and naming ()

* [zero] modify api ()

* [zero] modify api

* [test] remove _grad_store access in tests

* [test] fix ()

* [CI] skip openmoe CI check

* [CI] fox pre-commit

* [zero] remove redundant memebr init ()

* [misc] remove useless code, modify the pg mesh implementation

* [misc] remove useless code, modify the pg mesh implementation

* [misc] use tempfile

* resolve conflict with main branch

* [misc] use tempfile in test_moe_checkpoint.py

* [misc] remove useless code, add assertion about sequence parallel, move logger into function

* [misc] remove useless code

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
2024-06-28 14:00:08 +08:00

162 lines
6.1 KiB
Python

import math
from typing import Callable, Optional, Tuple
import torch
import torch.nn as nn
from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON
from colossalai.moe._operation import MoeInGradScaler, MoeOutGradScaler
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import get_activation
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.moe_tensor.api import get_ep_rank, get_ep_size
if HAS_TRITON:
from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine
class MLPExperts(nn.Module):
"""
SparseMLP is a multi-layer perceptron with sparse expert parallel layers.
Args:
num_experts (int): The number of experts
hidden_size (int): The hidden size of MLP
intermediate_size (int): The intermediate size of MLP
expert_parallel (str, optional): The parallelism of experts. Now we have None, EP and TP.
activation (optional): The activation function of MLP
drop_rate (float, optional): The drop rate of MLP
gated (bool, optional): Whether to use gated MLP
use_kernel (bool, optional): Whether to use kernel optimization
"""
def __init__(
self,
num_experts: int,
hidden_size: int,
intermediate_size: int,
expert_parallel: Optional[str] = "EP",
activation: Optional[Callable] = None,
drop_rate: Optional[float] = 0,
gated: Optional[bool] = False,
use_kernel: Optional[bool] = False,
):
super().__init__()
assert expert_parallel in ["EP", "TP", None]
self.expert_parallel = expert_parallel
self.num_total_experts = num_experts
self.gated = gated
self.use_kernel = use_kernel
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
# get expert parallel info
if expert_parallel is not None:
self.num_local_experts, self.moe_info = MOE_MANAGER.get_info(
num_experts, use_tp=True if expert_parallel == "TP" else False
)
# get settings for different parallel
self.ep_size = get_ep_size(self)
if expert_parallel == "TP":
intermediate_size = intermediate_size // self.ep_size
num_experts = self.num_total_experts
else:
num_experts = self.num_local_experts
else:
self.num_local_experts = self.num_total_experts
self.ep_size = 1
if gated:
self.wi_gate = nn.Parameter(
torch.empty(
num_experts, hidden_size, intermediate_size * 2 if activation == "swiglu" else intermediate_size
)
)
self.wi_up = nn.Parameter(torch.empty(num_experts, hidden_size, intermediate_size))
else:
self.wi = nn.Parameter(torch.empty(num_experts, hidden_size, intermediate_size))
self.wo = nn.Parameter(torch.empty(num_experts, intermediate_size, hidden_size))
self.act_name = activation
self.act = get_activation(activation)
self.drop = nn.Dropout(p=drop_rate)
if expert_parallel is not None:
for param in self.parameters():
set_moe_tensor_info(param, self.moe_info)
# init param
self.reset_parameters()
@torch.no_grad()
def reset_parameters(self):
# expert param should be different
if self.expert_parallel is not None:
seed_ctx = Randomizer(get_ep_rank(self)).fork_rng(enable_cpu=True)
else:
seed_ctx = Randomizer(42).fork_rng(enable_cpu=True)
with seed_ctx:
if self.gated:
torch.nn.init.normal_(self.wi_gate, std=math.sqrt(0.1 / self.hidden_size))
torch.nn.init.normal_(self.wi_up, std=math.sqrt(0.1 / self.hidden_size))
else:
torch.nn.init.normal_(self.wi, std=math.sqrt(0.1 / self.hidden_size))
torch.nn.init.normal_(self.wo, std=math.sqrt(0.1 / self.intermediate_size))
def forward(
self,
x: torch.Tensor,
param_slice: Tuple[slice] = (slice(None),),
use_sparse: bool = True,
) -> torch.Tensor:
"""
forward: hidden_size --> intermediate_size --> hidden_size
Args:
x (torch.Tensor): The input tensor of shape (num_groups, num_experts, capacity, hidden_size)
Returns:
torch.Tensor: The output tensor of shape (num_groups, num_experts, capacity, hidden_size)
"""
x = MoeInGradScaler.apply(x, self.ep_size)
e = x.size(1)
h = x.size(-1)
x = x.transpose(0, 1)
inshape = x.shape
x = x.reshape(e, -1, h)
if self.use_kernel and use_sparse:
seq_len = x.shape[1]
with torch.no_grad():
mask = x[:, :, 0] != 0.0
mask = torch.sum(mask, dim=-1)
x_list = []
for i in range(e):
x_list.append(x[i, : mask[i]])
x = x_list
if self.gated:
x_gate = [torch.mm(x[i], self.wi_gate[param_slice][i]) for i in range(e)]
x_up = [torch.mm(x[i], self.wi_up[param_slice][i]) for i in range(e)]
if self.use_kernel and HAS_TRITON and self.act_name == "swiglu":
x = [LlamaActCombine.apply(x_gate[i], x_up[i]) for i in range(e)]
else:
x = [self.act(x_gate[i]) * x_up[i] for i in range(e)]
else:
x = [torch.mm(x[i], self.wi[param_slice][i]) for i in range(e)]
x = [self.act(x[i]) for i in range(e)]
x = [self.drop(x[i]) for i in range(e)]
x = [torch.mm(x[i], self.wo[param_slice][i]) for i in range(e)]
if self.use_kernel and use_sparse:
for i in range(e):
x[i] = torch.nn.functional.pad(x[i], (0, 0, 0, seq_len - x[i].shape[0]), mode="constant", value=0)
x = torch.cat([x[i].unsqueeze(0) for i in range(e)], dim=0)
x = x.reshape(inshape)
x = x.transpose(0, 1).contiguous()
x = MoeOutGradScaler.apply(x, self.ep_size)
return x