1
0
mirror of https://github.com/hpcaitech/ColossalAI.git synced 2025-05-11 01:48:07 +00:00
ColossalAI/colossalai/shardformer/shard/shard_config.py
Haze188 416580b314
[MoE/ZeRO] Moe refactor with zero refactor ()
* [moe] removed openmoe-coupled code and rectify mixstral code ()

* [Feauture] MoE refractor; Intergration with Mixtral  ()

* cherry pick from refractor-moe branch

* tests passed

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support ep + zero

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* add mixtral auto policy & move pipeline forward code to modeling folder

* [moe refactor] modify kernel test without Route Class

* [moe refactor] add moe tensor test path environment variable to github workflow

* fix typos

* fix moe test bug due to the code rebase

* [moe refactor] fix moe zero test, and little bug in low level zero

* fix typo

* add moe tensor path to github workflow

* remove some useless code

* fix typo & unify global variable XX_AXIS logic without using -1

* fix typo & prettifier the code

* remove print code & support zero 2 test

* remove useless code

* reanme function

* fix typo

* fix typo

* Further improve the test code

* remove print code

* [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test

* [moe refactor] skip some unit test which will be refactored later

* [moe refactor] fix unit import error

* [moe refactor] fix circular import issues

* [moe refactor] remove debug code

* [moe refactor] update github workflow

* [moe/zero] refactor low level optimizer ()

* [zero] refactor low level optimizer

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] MoE refactor with newest version of ZeRO ()

* [zero] remove redundant members in BucketStore ()

* [zero] align api with previous version

* [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug ()

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* [hotfix]Solve the compatibility issue of zero refactor ()

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* Modify function parameter names to resolve compatibility issues

* [zero] fix missing hook removal ()

* [MoE] Resolve .github conflict ()

* [Fix/Example] Fix Llama Inference Loading Data Type ()

* [fix/example] fix llama inference loading dtype

* revise loading dtype of benchmark llama3

* [release] update version ()

* [release] update version

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [test] fix ddp plugin test

* [test] fix gptj and rpc test

* [devops] fix cuda ext compatibility

* [inference] fix flash decoding test

* [inference] fix flash decoding test

* fix ()

* [test] Fix/fix testcase ()

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [Hotfix] Add missing init file in inference.executor ()

* [CI/tests] simplify some test case to reduce testing time ()

* [ci/tests] simplify some test case to reduce testing time

* [ci/tests] continue to remove test case to reduce ci time cost

* restore some test config

* [ci/tests] continue to reduce ci time cost

* [misc] update dockerfile ()

* [misc] update dockerfile

* [misc] update dockerfile

* [devops] fix docker ci ()

* [Inference]Add Streaming LLM ()

* Add Streaming LLM

* add some parameters to llama_generation.py

* verify streamingllm config

* add test_streamingllm.py

* modified according to the opinions of review

* add Citation

* change _block_tables tolist

* [hotfix] fix llama flash attention forward ()

* [misc] Accelerate CI for zero and dist optim ()

* remove fp16 from lamb

* remove d2h copy in checking states

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Test/CI] remove test cases to reduce CI duration ()

* [test] smaller gpt2 test case

* [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py

* [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py

* [test] reduce test cases tests/test_zero/test_gemini/test_optim.py

* Revert "[test] smaller gpt2 test case"

Some tests might depend on the size of model (num of chunks)

This reverts commit df705a5210.

* [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py

* [CI] smaller test model for two mwo the two modifid cases

* [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there

* [hotfix] fix testcase in test_fx/test_tracer ()

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [fix] fix test_deepfm_model & test_dlrf_model;

* [fix] fix test_hf_albert & test_hf_gpt;

* [gemini] optimize reduce scatter d2h copy ()

* [gemini] optimize reduce scatter d2h copy

* [fix] fix missing reduce variable

* [refactor] remove legacy async reduce scatter code

* [gemini] missing sync

* Revert "[refactor] remove legacy async reduce scatter code"

This reverts commit 58ad76d466.

* [gemini] further optimize with async all reduce

* [fix] pass flag from manager to chunk

* Allow building cuda extension without a device. ()

Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are.

* [misc] fix dist logger ()

* [install]fix setup ()

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update requirements ()

* [shardformer] fix import ()

* upgrade colossal-chat support tp_group>1, add sp for sft

* upgrade ppo dpo rm script

* run pre-commit

* moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy

* fix training script

* fix ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix transformers version

* remove duplicated test

* fix datasets version

* remove models that require huggingface auth from ci

* remove local data path

* update ci

* remove baichuan from template test due to transformer version conflict

* merge

* Refactor modeling by adding attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix tests and naming

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Pass inference model shard configs for module init

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Clean up

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* replace the customized dataloader setup with the build-in one

* replace the customized dataloader setup with the build-in one

* Remove flash attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* fix readme

* Fix test import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* update sft trainning script

* [Inference]refactor baichuan ()

* refactor baichuan

* remove unused code and add TODO for lazyinit

* [test] fix chatglm test kit ()

* [shardformer] fix modeling of bloom and falcon ()

* [test] fix qwen2 pytest distLarge ()

* [Inference] Fix flash-attn import and add model test ()

* Fix torch int32 dtype

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix flash-attn import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add generalized model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Remove exposed path to model

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add default value for use_flash_attn

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Rename model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* [Gemini] Use async stream to prefetch and h2d data moving ()

* use async stream to prefetch and h2d data moving

* Remove redundant code

* [gemini] quick fix on possible async operation ()

* [gemini] quick fix on possible async operation

* [gemini] quick fix on possible async operation

* [shardformer] upgrade transformers to 4.39.3 ()

* [shardformer]upgrade transformers for gpt2/gptj/whisper ()

* [shardformer] fix modeling of gpt2 and gptj

* [shardformer] fix whisper modeling

* [misc] update requirements

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* [shardformer]upgrade transformers for mistral ()

* upgrade transformers for mistral

* fix

* fix

* [shardformer]upgrade transformers for llama ()

* update transformers

fix

* fix

* fix

* [inference] upgrade transformers ()

* update transformers

fix

* fix

* fix

* fix

* fix

* [gemini] update transformers for gemini ()

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* Support 4d parallel + flash attention ()

* support tp + sp + pp

* remove comments

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>

* [zero] fix hook bug

* [zero] add low level optimizer back ()

* [zero] fix param & refactor

* [zero] add back original low level opt

* [zero] remove moe related

* [zero] pass zero tests

* [zero] refactor

* [chore] add del func back

* [zero] comments and naming ()

* [zero] modify api ()

* [zero] modify api

* [test] remove _grad_store access in tests

* [test] fix ()

* [CI] skip openmoe CI check

* [CI] fox pre-commit

* [zero] remove redundant memebr init ()

* [misc] remove useless code, modify the pg mesh implementation

* [misc] remove useless code, modify the pg mesh implementation

* [misc] use tempfile

* resolve conflict with main branch

* [misc] use tempfile in test_moe_checkpoint.py

* [misc] remove useless code, add assertion about sequence parallel, move logger into function

* [misc] remove useless code

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
2024-06-28 14:00:08 +08:00

129 lines
6.3 KiB
Python

import warnings
from dataclasses import dataclass, field
from typing import Any, Dict, Optional
import torch.distributed as dist
from torch.distributed import ProcessGroup
from colossalai.pipeline.stage_manager import PipelineStageManager
from .grad_ckpt_config import GradientCheckpointConfig
__all__ = ["ShardConfig"]
SUPPORT_SP_MODE = ["split_gather", "ring", "all_to_all"]
@dataclass
class ShardConfig:
r"""
The config for sharding the huggingface model
Args:
tensor_parallel_process_group (Optional[ProcessGroup]): The process group of tensor parallelism, it's necessary when using tensor parallel. Defaults to None, which is the global process group.
pipeline_stage_manager (Optional[PipelineStageManager]): If using pipeline parallelism, it's necessary to specify a pipeline stage manager for inter-process communication in pipeline parallelism. Defaults to None, which means not using pipeline parallelism.
enable_tensor_parallelism (bool): Whether to use tensor parallelism. Defaults to True.
enable_fused_normalization (bool): Whether to use fused layernorm. Defaults to False.
enable_flash_attention (bool, optional): Whether to switch on flash attention. Defaults to False.
enable_jit_fused (bool, optional): Whether to switch on JIT fused operators. Defaults to False.
enable_sequence_parallelism (bool): Whether to turn on sequence parallelism, which partitions non-tensor-parallel regions along the sequence dimension. Defaults to False.
enable_sequence_overlap (bool): Whether to turn on sequence overlap, which overlap the computation and communication in sequence parallelism. It can only be used when enable_sequence_parallelism is True. Defaults to False.
gradient_checkpoint_config (Optional[GradientCheckpointConfig]): The gradient checkpoint config. Defaults to None.
enable_all_optimization (bool): Whether to turn on all optimization tools including 'fused normalization', 'flash attention', 'JIT fused operators', 'sequence parallelism' and 'sequence overlap'. Defaults to False.
"""
tensor_parallel_process_group: Optional[ProcessGroup] = None
sequence_parallel_process_group: Optional[ProcessGroup] = None
pipeline_stage_manager: Optional[PipelineStageManager] = None
enable_tensor_parallelism: bool = True
enable_all_optimization: bool = False
enable_fused_normalization: bool = False
enable_flash_attention: bool = False
enable_jit_fused: bool = False
enable_sequence_parallelism: bool = False
sequence_parallelism_mode: str = None
enable_sequence_overlap: bool = False
parallel_output: bool = True
make_vocab_size_divisible_by: int = 64
gradient_checkpoint_config: Optional[GradientCheckpointConfig] = None
extra_kwargs: Dict[str, Any] = field(default_factory=dict)
ep_group: Optional[ProcessGroup] = None
# pipeline_parallel_size: int
# data_parallel_size: int
# tensor_parallel_mode: Literal['1d', '2d', '2.5d', '3d']
@property
def tensor_parallel_size(self):
return self._tensor_parallel_size
@property
def sequence_parallel_size(self):
return self._sequence_parallel_size
def __post_init__(self):
# turn on all optimization if all_optimization is set to True
if self.enable_all_optimization:
self._turn_on_all_optimization()
if self.enable_sequence_parallelism:
self.sequence_parallelism_mode = (
"split_gather" if self.sequence_parallelism_mode is None else self.sequence_parallelism_mode
)
assert (
self.sequence_parallelism_mode in SUPPORT_SP_MODE
), f"Sequence parallelism mode {self.sequence_parallelism_mode} is not in the supported list {SUPPORT_SP_MODE}"
if self.sequence_parallelism_mode in ["split_gather", "ring"]:
assert (
self.enable_tensor_parallelism
), f"sequence parallelism mode {self.sequence_parallelism_mode} can only be used when enable_tensor_parallelism is True"
elif self.sequence_parallelism_mode in ["all_to_all"]:
assert (
not self.enable_tensor_parallelism
), f"sequence parallelism mode {self.sequence_parallelism_mode} can only be used when enable_tensor_parallelism is False"
if self.enable_sequence_overlap:
self.enable_sequence_overlap = False
warnings.warn(
f"The enable_sequence_overlap flag will be ignored in sequence parallelism mode {self.sequence_parallelism_mode}"
)
else:
if self.sequence_parallelism_mode:
self.sequence_parallelism_mode = None
warnings.warn(
f"The sequence_parallelism_mode will be ignored when enable_sequence_parallelism is False"
)
assert (
not self.enable_sequence_overlap
), f"enable_sequence_overlap can only be set to True when enable_sequence_parallelism is True"
# get the tensor parallel size
if not self.enable_tensor_parallelism:
self._tensor_parallel_size = 1
else:
self._tensor_parallel_size = dist.get_world_size(self.tensor_parallel_process_group)
# get the sequence parallel size
if not self.enable_sequence_parallelism:
self._sequence_parallel_size = 1
else:
self._sequence_parallel_size = dist.get_world_size(self.sequence_parallel_process_group)
def _turn_on_all_optimization(self):
"""
Turn on all optimization.
"""
# you can add all the optimization flag here
try:
from apex.normalization import FusedLayerNorm as ApexFusedLayerNorm # noqa
apex_avail = True
except ImportError:
apex_avail = False
warnings.warn("You set enable_all_optimization=True, but apex is not installed.")
self.enable_fused_normalization = apex_avail
self.enable_flash_attention = True
self.enable_jit_fused = True
# This can cause non-in-place param sharding when used without ZeRO.
# It may also slow down training when seq len is small. Plz enable manually.
# self.enable_sequence_parallelism = True
# self.enable_sequence_overlap = True