ColossalAI/tests/test_moe/test_moe_ep_tp.py
Haze188 416580b314
[MoE/ZeRO] Moe refactor with zero refactor (#5821)
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471)

* [Feauture] MoE refractor; Intergration with Mixtral  (#5682)

* cherry pick from refractor-moe branch

* tests passed

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support ep + zero

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* add mixtral auto policy & move pipeline forward code to modeling folder

* [moe refactor] modify kernel test without Route Class

* [moe refactor] add moe tensor test path environment variable to github workflow

* fix typos

* fix moe test bug due to the code rebase

* [moe refactor] fix moe zero test, and little bug in low level zero

* fix typo

* add moe tensor path to github workflow

* remove some useless code

* fix typo & unify global variable XX_AXIS logic without using -1

* fix typo & prettifier the code

* remove print code & support zero 2 test

* remove useless code

* reanme function

* fix typo

* fix typo

* Further improve the test code

* remove print code

* [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test

* [moe refactor] skip some unit test which will be refactored later

* [moe refactor] fix unit import error

* [moe refactor] fix circular import issues

* [moe refactor] remove debug code

* [moe refactor] update github workflow

* [moe/zero] refactor low level optimizer (#5767)

* [zero] refactor low level optimizer

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] MoE refactor with newest version of ZeRO (#5801)

* [zero] remove redundant members in BucketStore (#5802)

* [zero] align api with previous version

* [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819)

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* [hotfix]Solve the compatibility issue of zero refactor (#5823)

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* Modify function parameter names to resolve compatibility issues

* [zero] fix missing hook removal (#5824)

* [MoE] Resolve .github conflict (#5829)

* [Fix/Example] Fix Llama Inference Loading Data Type (#5763)

* [fix/example] fix llama inference loading dtype

* revise loading dtype of benchmark llama3

* [release] update version (#5752)

* [release] update version

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [test] fix ddp plugin test

* [test] fix gptj and rpc test

* [devops] fix cuda ext compatibility

* [inference] fix flash decoding test

* [inference] fix flash decoding test

* fix (#5765)

* [test] Fix/fix testcase (#5770)

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [Hotfix] Add missing init file in inference.executor (#5774)

* [CI/tests] simplify some test case to reduce testing time (#5755)

* [ci/tests] simplify some test case to reduce testing time

* [ci/tests] continue to remove test case to reduce ci time cost

* restore some test config

* [ci/tests] continue to reduce ci time cost

* [misc] update dockerfile (#5776)

* [misc] update dockerfile

* [misc] update dockerfile

* [devops] fix docker ci (#5780)

* [Inference]Add Streaming LLM (#5745)

* Add Streaming LLM

* add some parameters to llama_generation.py

* verify streamingllm config

* add test_streamingllm.py

* modified according to the opinions of review

* add Citation

* change _block_tables tolist

* [hotfix] fix llama flash attention forward (#5777)

* [misc] Accelerate CI for zero and dist optim (#5758)

* remove fp16 from lamb

* remove d2h copy in checking states

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Test/CI] remove test cases to reduce CI duration (#5753)

* [test] smaller gpt2 test case

* [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py

* [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py

* [test] reduce test cases tests/test_zero/test_gemini/test_optim.py

* Revert "[test] smaller gpt2 test case"

Some tests might depend on the size of model (num of chunks)

This reverts commit df705a5210.

* [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py

* [CI] smaller test model for two mwo the two modifid cases

* [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there

* [hotfix] fix testcase in test_fx/test_tracer (#5779)

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [fix] fix test_deepfm_model & test_dlrf_model;

* [fix] fix test_hf_albert & test_hf_gpt;

* [gemini] optimize reduce scatter d2h copy (#5760)

* [gemini] optimize reduce scatter d2h copy

* [fix] fix missing reduce variable

* [refactor] remove legacy async reduce scatter code

* [gemini] missing sync

* Revert "[refactor] remove legacy async reduce scatter code"

This reverts commit 58ad76d466.

* [gemini] further optimize with async all reduce

* [fix] pass flag from manager to chunk

* Allow building cuda extension without a device. (#5535)

Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are.

* [misc] fix dist logger (#5782)

* [install]fix setup (#5786)

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update requirements (#5787)

* [shardformer] fix import (#5788)

* upgrade colossal-chat support tp_group>1, add sp for sft

* upgrade ppo dpo rm script

* run pre-commit

* moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy

* fix training script

* fix ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix transformers version

* remove duplicated test

* fix datasets version

* remove models that require huggingface auth from ci

* remove local data path

* update ci

* remove baichuan from template test due to transformer version conflict

* merge

* Refactor modeling by adding attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix tests and naming

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Pass inference model shard configs for module init

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Clean up

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* replace the customized dataloader setup with the build-in one

* replace the customized dataloader setup with the build-in one

* Remove flash attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* fix readme

* Fix test import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* update sft trainning script

* [Inference]refactor baichuan (#5791)

* refactor baichuan

* remove unused code and add TODO for lazyinit

* [test] fix chatglm test kit (#5793)

* [shardformer] fix modeling of bloom and falcon (#5796)

* [test] fix qwen2 pytest distLarge (#5797)

* [Inference] Fix flash-attn import and add model test (#5794)

* Fix torch int32 dtype

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix flash-attn import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add generalized model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Remove exposed path to model

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add default value for use_flash_attn

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Rename model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* [Gemini] Use async stream to prefetch and h2d data moving (#5781)

* use async stream to prefetch and h2d data moving

* Remove redundant code

* [gemini] quick fix on possible async operation (#5803)

* [gemini] quick fix on possible async operation

* [gemini] quick fix on possible async operation

* [shardformer] upgrade transformers to 4.39.3 (#5815)

* [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807)

* [shardformer] fix modeling of gpt2 and gptj

* [shardformer] fix whisper modeling

* [misc] update requirements

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* [shardformer]upgrade transformers for mistral (#5808)

* upgrade transformers for mistral

* fix

* fix

* [shardformer]upgrade transformers for llama (#5809)

* update transformers

fix

* fix

* fix

* [inference] upgrade transformers (#5810)

* update transformers

fix

* fix

* fix

* fix

* fix

* [gemini] update transformers for gemini (#5814)

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* Support 4d parallel + flash attention (#5789)

* support tp + sp + pp

* remove comments

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>

* [zero] fix hook bug

* [zero] add low level optimizer back (#5839)

* [zero] fix param & refactor

* [zero] add back original low level opt

* [zero] remove moe related

* [zero] pass zero tests

* [zero] refactor

* [chore] add del func back

* [zero] comments and naming (#5840)

* [zero] modify api (#5843)

* [zero] modify api

* [test] remove _grad_store access in tests

* [test] fix (#5857)

* [CI] skip openmoe CI check

* [CI] fox pre-commit

* [zero] remove redundant memebr init (#5862)

* [misc] remove useless code, modify the pg mesh implementation

* [misc] remove useless code, modify the pg mesh implementation

* [misc] use tempfile

* resolve conflict with main branch

* [misc] use tempfile in test_moe_checkpoint.py

* [misc] remove useless code, add assertion about sequence parallel, move logger into function

* [misc] remove useless code

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
2024-06-28 14:00:08 +08:00

239 lines
9.6 KiB
Python

import os
import warnings
from typing import Dict
import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import sync_moe_model_param
# from colossalai.shardformer.layer import SparseMLP
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_rank, get_ep_size, is_moe_tensor
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
from tests.test_moe.moe_utils import MoeGradientHandler
def sync_tp_from_local(tp_model, local_model, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from local model
Args:
tp_model (MoeModule)
local_model (MoeModule)
"""
for (tp_name, tp_param), (local_name, local_param) in zip(
tp_model.named_parameters(), local_model.named_parameters()
):
assert tp_name == local_name
if not is_moe_tensor(tp_param):
if assert_grad_flag:
assert torch.allclose(tp_param, local_param)
assert torch.allclose(tp_param.grad, local_param.grad)
else:
tp_param.data.copy_(local_param.data)
continue
tp_rank = get_ep_rank(tp_param)
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape, local_param.shape)) if d1 != d2][0]
tp_slice = [slice(None)] * tp_dim + [
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
]
if assert_grad_flag:
assert torch.allclose(tp_param, local_param[tuple(tp_slice)])
assert torch.allclose(tp_param.grad, local_param.grad[tuple(tp_slice)])
else:
tp_param.data.copy_(local_param[tuple(tp_slice)].data)
def sync_tp_from_ep(tp_model, ep_model, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from ep model
Args:
tp_model (MoeModule)
ep_model (MoeModule)
"""
for (tp_name, tp_param), (ep_name, ep_param) in zip(tp_model.named_parameters(), ep_model.named_parameters()):
assert tp_name == ep_name
if not is_moe_tensor(tp_param):
if assert_grad_flag:
assert torch.allclose(tp_param, ep_param)
assert torch.allclose(tp_param.grad, ep_param.grad)
else:
tp_param.data.copy_(ep_param.data)
continue
# gather param from ep model
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
all_param = torch.cat(param_list, dim=0)
if assert_grad_flag:
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
all_grad = torch.cat(grad_list, dim=0)
# get tp param
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape[1:], all_param.shape[1:])) if d1 != d2][0] + 1
tp_rank = get_ep_rank(tp_param)
tp_slice = [slice(None)] * tp_dim + [
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
]
new_tp_param = all_param[tuple(tp_slice)]
if assert_grad_flag:
new_grad = all_grad[tuple(tp_slice)]
if assert_grad_flag:
assert torch.allclose(tp_param, new_tp_param)
assert torch.allclose(tp_param.grad, new_grad)
else:
tp_param.data.copy_(new_tp_param.data)
def sync_local_from_ep(local_model, ep_model, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from ep model
Args:
local_model (MoeModule)
ep_model (MoeModule)
"""
for (local_name, local_param), (ep_name, ep_param) in zip(
local_model.named_parameters(), ep_model.named_parameters()
):
assert local_name == ep_name
if "experts" not in local_name:
if assert_grad_flag:
assert torch.allclose(local_param, ep_param)
assert torch.allclose(local_param.grad, ep_param.grad)
else:
local_param.data.copy_(ep_param.data)
continue
# gather param from ep model
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
all_param = torch.cat(param_list, dim=0)
if assert_grad_flag:
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
all_grad = torch.cat(grad_list, dim=0)
if assert_grad_flag:
assert torch.allclose(local_param, all_param)
assert torch.allclose(local_param.grad, all_grad)
else:
local_param.data.copy_(all_param.data)
def run_test(rank: int, world_size: int, port: int, num_experts: int, batch_size: int, dim: int, config: Dict):
assert batch_size % world_size == 0
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel=None)
local_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel="EP")
enable_hierarchical_comm = config.get("enable_hierarchical_comm", False)
if enable_hierarchical_comm:
os.environ["LOCAL_WORLD_SIZE"] = str(world_size)
ep_model = SparseMLP(
num_experts=num_experts,
hidden_size=dim,
intermediate_size=dim * 2,
enable_hierarchical_comm=enable_hierarchical_comm,
)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel="TP")
tp_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
ep_model = ep_model.to(get_accelerator().get_current_device())
tp_model = tp_model.to(get_accelerator().get_current_device())
local_model = local_model.to(get_accelerator().get_current_device())
# sync ep param
sync_moe_model_param(ep_model)
dist_dict = MOE_MANAGER.parallel_info_dict
assert_equal_in_group(ep_model.experts.wi.data, dist_dict[world_size].dp_group)
assert_equal_in_group(ep_model.experts.wo.data, dist_dict[world_size].dp_group)
ep_grad_handler = MoeGradientHandler(ep_model)
# sync local param
sync_local_from_ep(local_model, ep_model)
# sync tp param
sync_tp_from_ep(tp_model, ep_model)
tp_grad_handler = MoeGradientHandler(tp_model)
rank = dist.get_rank()
input_data = torch.randn(batch_size, dim, device=get_accelerator().get_current_device())
micro_batch_size = batch_size // world_size
index = rank * micro_batch_size
# NOTE: ep & tp takes in sharded data for each process
shard_data = input_data.detach()[index : index + micro_batch_size]
out_local = local_model(input_data)
MOE_MANAGER.reset_loss()
out_tp = tp_model(shard_data)
MOE_MANAGER.reset_loss()
out_ep = ep_model(shard_data)
MOE_MANAGER.reset_loss()
assert torch.allclose(
out_tp, out_ep, atol=1e-6
), f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_tp - out_ep))}"
try:
out_local_slice = out_local[index : index + micro_batch_size]
assert torch.allclose(
out_ep, out_local_slice, atol=1e-6
), f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_ep - out_local_slice))}"
except AssertionError:
"""
e.g., in local model, tokens = 4, capacity = 2, experts = 2, topk = 1
router yields [01] --> [0], [23] --> [1], this is valid as capacity is 2
However, in ep mode, there are 2 separate routers dealing with sharded data.
Assume router 0 handles token [01] and router 1 handles token [23].
Note that for each router the capacity is only 1 !!!
Thus, router 0 may yields [0] --> [0] or [1] --> [0], but not both.
The same thing happens on router 1. And finally some tokens are dropped due to the sharded nature.
"""
warnings.warn(
"EP & TP may result in different behavior from local model. " "Please check the comments for details."
)
out_local.mean().backward()
out_tp.mean().backward()
tp_grad_handler.handle_gradient()
out_ep.mean().backward()
ep_grad_handler.handle_gradient()
assert_equal_in_group(ep_model.experts.wi.grad, dist_dict[world_size].dp_group)
assert_equal_in_group(ep_model.experts.wo.grad, dist_dict[world_size].dp_group)
sync_tp_from_ep(tp_model, ep_model, assert_grad_flag=True)
try:
sync_local_from_ep(local_model, ep_model, assert_grad_flag=True)
except AssertionError:
warnings.warn(
"EP & TP may result in different behavior from local model. " "Please check the comments for details."
)
@pytest.mark.skip(reason="moe need to be refactored")
@pytest.mark.dist
@pytest.mark.parametrize("num_experts", [4, 64])
@pytest.mark.parametrize("batch_size", [16])
@pytest.mark.parametrize("dim", [64])
@pytest.mark.parametrize(
"config",
[
{"enable_hierarchical_comm": False},
{"enable_hierarchical_comm": True},
],
)
@rerun_if_address_is_in_use()
def test_moe_ep_tp(num_experts: int, batch_size: int, dim: int, config: Dict):
spawn(run_test, 2, num_experts=num_experts, batch_size=batch_size, dim=dim, config=config)
if __name__ == "__main__":
test_moe_ep_tp(num_experts=8, batch_size=32, dim=32)