mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-10-31 05:49:56 +00:00 
			
		
		
		
	* [misc] update pre-commit * [misc] run pre-commit * [misc] remove useless configuration files * [misc] ignore cuda for clang-format
		
			
				
	
	
		
			149 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # coding=utf-8
 | |
| # Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| """Learning rate decay functions."""
 | |
| 
 | |
| import math
 | |
| 
 | |
| 
 | |
| class AnnealingLR(object):
 | |
|     """Anneals the learning rate."""
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         optimizer,
 | |
|         max_lr,
 | |
|         min_lr,
 | |
|         warmup_steps,
 | |
|         decay_steps,
 | |
|         decay_style,
 | |
|         use_checkpoint_lr_scheduler=True,
 | |
|         override_lr_scheduler=False,
 | |
|     ):
 | |
|         # Class values.
 | |
|         self.optimizer = optimizer
 | |
| 
 | |
|         self.max_lr = float(max_lr)
 | |
|         self.min_lr = min_lr
 | |
|         assert self.min_lr >= 0.0
 | |
|         assert self.max_lr >= self.min_lr
 | |
| 
 | |
|         self.warmup_steps = warmup_steps
 | |
|         self.num_steps = 0
 | |
|         self.decay_steps = decay_steps
 | |
|         assert self.decay_steps > 0
 | |
|         assert self.warmup_steps < self.decay_steps
 | |
| 
 | |
|         self.decay_style = decay_style
 | |
| 
 | |
|         self.override_lr_scheduler = override_lr_scheduler
 | |
|         self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
 | |
|         if self.override_lr_scheduler:
 | |
|             assert not self.use_checkpoint_lr_scheduler, "both override and " "use-checkpoint are set."
 | |
| 
 | |
|         # Set the learning rate
 | |
|         self.step(0)
 | |
| 
 | |
|     def get_lr(self):
 | |
|         """Learning rate decay functions from:
 | |
|         https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""
 | |
| 
 | |
|         # Use linear warmup for the initial part.
 | |
|         if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps:
 | |
|             return self.max_lr * float(self.num_steps) / float(self.warmup_steps)
 | |
| 
 | |
|         # If the learning rate is constant, just return the initial value.
 | |
|         if self.decay_style == "constant":
 | |
|             return self.max_lr
 | |
| 
 | |
|         # For any steps larger than `self.decay_steps`, use `self.min_lr`.
 | |
|         if self.num_steps > self.decay_steps:
 | |
|             return self.min_lr
 | |
| 
 | |
|         # If we are done with the warmup period, use the decay style.
 | |
|         num_steps_ = self.num_steps - self.warmup_steps
 | |
|         decay_steps_ = self.decay_steps - self.warmup_steps
 | |
|         decay_ratio = float(num_steps_) / float(decay_steps_)
 | |
|         assert decay_ratio >= 0.0
 | |
|         assert decay_ratio <= 1.0
 | |
|         delta_lr = self.max_lr - self.min_lr
 | |
| 
 | |
|         if self.decay_style == "linear":
 | |
|             coeff = 1.0 - decay_ratio
 | |
|         elif self.decay_style == "cosine":
 | |
|             coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
 | |
|         else:
 | |
|             raise Exception("{} decay style is not supported.".format(self.decay_style))
 | |
| 
 | |
|         return self.min_lr + coeff * delta_lr
 | |
| 
 | |
|     def step(self, increment=1):
 | |
|         """Set lr for all parameters groups."""
 | |
|         self.num_steps += increment
 | |
|         new_lr = self.get_lr()
 | |
|         for group in self.optimizer.param_groups:
 | |
|             group["lr"] = new_lr
 | |
| 
 | |
|     def state_dict(self):
 | |
|         state_dict = {
 | |
|             "max_lr": self.max_lr,
 | |
|             "warmup_steps": self.warmup_steps,
 | |
|             "num_steps": self.num_steps,
 | |
|             "decay_style": self.decay_style,
 | |
|             "decay_steps": self.decay_steps,
 | |
|             "min_lr": self.min_lr,
 | |
|         }
 | |
|         return state_dict
 | |
| 
 | |
|     def _check_and_set(self, cls_value, sd_value, name):
 | |
|         """Auxiliary function for checking the values in the checkpoint and
 | |
|         setting them."""
 | |
|         if self.override_lr_scheduler:
 | |
|             return cls_value
 | |
| 
 | |
|         if not self.use_checkpoint_lr_scheduler:
 | |
|             assert cls_value == sd_value, (
 | |
|                 f"AnnealingLR: class input value {cls_value} and checkpoint" f"value {sd_value} for {name} do not match"
 | |
|             )
 | |
|         return sd_value
 | |
| 
 | |
|     def load_state_dict(self, sd):
 | |
|         if "start_lr" in sd:
 | |
|             max_lr_ = sd["start_lr"]
 | |
|         else:
 | |
|             max_lr_ = sd["max_lr"]
 | |
|         self.max_lr = self._check_and_set(self.max_lr, max_lr_, "learning rate")
 | |
| 
 | |
|         self.min_lr = self._check_and_set(self.min_lr, sd["min_lr"], "minimum learning rate")
 | |
| 
 | |
|         if "warmup_iter" in sd:
 | |
|             warmup_steps_ = sd["warmup_iter"]
 | |
|         else:
 | |
|             warmup_steps_ = sd["warmup_steps"]
 | |
|         self.warmup_steps = self._check_and_set(self.warmup_steps, warmup_steps_, "warmup iterations")
 | |
| 
 | |
|         if "end_iter" in sd:
 | |
|             decay_steps_ = sd["end_iter"]
 | |
|         else:
 | |
|             decay_steps_ = sd["decay_steps"]
 | |
|         self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_, "total number of iterations")
 | |
|         self.decay_style = self._check_and_set(self.decay_style, sd["decay_style"], "decay style")
 | |
| 
 | |
|         if "num_iters" in sd:
 | |
|             num_steps = sd["num_iters"]
 | |
|         else:
 | |
|             num_steps = sd["num_steps"]
 | |
|         self.step(increment=num_steps)
 |