mirror of
				https://github.com/hpcaitech/ColossalAI.git
				synced 2025-11-04 07:58:42 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			75 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			75 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# -*- encoding: utf-8 -*-
 | 
						|
 | 
						|
from functools import partial
 | 
						|
 | 
						|
import colossalai
 | 
						|
import pytest
 | 
						|
import torch
 | 
						|
import torch.multiprocessing as mp
 | 
						|
from colossalai.logging import get_dist_logger
 | 
						|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
 | 
						|
from colossalai.utils import free_port
 | 
						|
from colossalai.utils.cuda import get_current_device
 | 
						|
from colossalai.utils.memory_tracer.model_data_memtracer import \
 | 
						|
    colo_model_mem_usage
 | 
						|
from colossalai.utils.memory import colo_device_memory_used
 | 
						|
from colossalai.zero.init_ctx import ZeroInitContext
 | 
						|
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
 | 
						|
from tests.components_to_test.registry import non_distributed_component_funcs
 | 
						|
 | 
						|
from common import CONFIG
 | 
						|
 | 
						|
 | 
						|
@parameterize("init_device_type", ['cpu', 'cuda'])
 | 
						|
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
 | 
						|
def run_model_test(init_device_type, shard_strategy_class):
 | 
						|
    logger = get_dist_logger("test_zero_init")
 | 
						|
 | 
						|
    for get_components_func in non_distributed_component_funcs:
 | 
						|
        model_builder, _, _, _, _ = get_components_func()
 | 
						|
        if init_device_type == 'cuda':
 | 
						|
            init_device = get_current_device()
 | 
						|
        elif init_device_type == 'cpu':
 | 
						|
            init_device = torch.device("cpu")
 | 
						|
        else:
 | 
						|
            continue
 | 
						|
 | 
						|
        model_numel_tensor = torch.zeros(1, dtype=torch.int)
 | 
						|
        with ZeroInitContext(target_device=init_device,
 | 
						|
                             shard_strategy=shard_strategy_class(),
 | 
						|
                             shard_param=True,
 | 
						|
                             model_numel_tensor=model_numel_tensor):
 | 
						|
            model = model_builder(checkpoint=True)
 | 
						|
 | 
						|
        for param in model.parameters():
 | 
						|
            assert hasattr(param, 'colo_attr')
 | 
						|
            assert param.colo_attr.sharded_data_tensor.dtype == torch.half
 | 
						|
            assert param.colo_attr.sharded_data_tensor.is_sharded
 | 
						|
            assert param.colo_attr.data_payload.device.type == init_device.type, \
 | 
						|
                f'{param.colo_attr.data_payload.device.type} vs. {init_device.type}'
 | 
						|
 | 
						|
        cuda_mem_use, _ = colo_model_mem_usage(model)
 | 
						|
        model_data_cuda_mem_MB = cuda_mem_use / 1e6
 | 
						|
        logger.info(f"Existing ZeRO Context.\nModel Data CUDA Memory {model_data_cuda_mem_MB} MB", ranks=[0])
 | 
						|
        sys_cuda_mem_MB = colo_device_memory_used(get_current_device()) / 1e6
 | 
						|
        logger.info(f"System CUDA Memory Usage {sys_cuda_mem_MB} MB", ranks=[0])
 | 
						|
        logger.info(f"Model Number Parameter {model_numel_tensor.numpy()[0]/1e6} M", ranks=[0])
 | 
						|
 | 
						|
 | 
						|
def run_dist(rank, world_size, port):
 | 
						|
    colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
 | 
						|
    run_model_test()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.dist
 | 
						|
@pytest.mark.parametrize("world_size", [1, 4])
 | 
						|
@rerun_if_address_is_in_use()
 | 
						|
def test_zero_init_context(world_size):
 | 
						|
    run_func = partial(run_dist, world_size=world_size, port=free_port())
 | 
						|
    mp.spawn(run_func, nprocs=world_size)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test_zero_init_context(4)
 |